Структурный параметр идентифицируемый

Структурный параметр называется идентифицируемым, если он может быть однозначно оценен с помощью косвенного метода наименьших квадратов.  [c.231]


Уравнение идентифицируемо, если идентифицируемы все входящие в него структурные параметры.  [c.231]

Иначе говоря, проблема идентифицируемости структурных параметров — это проблема достаточности эмпирических данных для оценки всех коэффициентов модели. Необходимым условием идентифицируемости уравнения является отсутствие среди линейных комбинаций оставшихся уравнений, таких, которые удовлетворяли бы всем ограничениям модели, накладываемым на исследуемое уравнение.  [c.220]

Из теоремы 1 следует, что структурные параметры (Во, Го, HO) идентифицируемы тогда и только тогда, когда их значения могут быть выведены из параметров приведенной формы (П0, о)- Поскольку без априорных ограниче-  [c.417]

С проблемой идентификации модели не следует путать проблему ее идентифицируемости (гл. 9), т. е. проблему возможности получения однозначно определенных параметров модели, заданной системой одновременных уравнений (точнее, параметров структурной формы модели, раскрывающей механизм формирования значений эндогенных переменных, по параметрам приведенной формы модели, в которой эндогенные переменные непосредственно выражаются через предопределенные переменные).  [c.22]


Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели. В этом случае структурные коэффициенты модели оцениваются через параметры приведенной формы модели и модель идентифицируема. Рассмотренная выше структурная модель (4.4) с двумя эндогенными и тремя экзогенными (предопределенными) переменными, содержащая шесть структурных коэффициентов, представляет собой идентифицируемую модель.  [c.187]

Для оценки параметров структурной модели система должна быть идентифицируема или сверхидентифицируема.  [c.189]

Рассмотренное счетное правило отражает необходимое, но недостаточное условие идентификации. Более точно условия идентификации определяются, если накладывать ограничения на коэффициенты матриц параметров структурной модели. Уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, оп-  [c.189]

Кроме того, существуют также чисто технические причины для соблюдения осторожности при оценке всех выводов, рассмотренных в разделах 20.1 и 20.2. Самая важная из них заключается в том, что в упомянутых исследованиях использовались такие приемы, как, например, обычная регрессия, рассчитываемая по методу наименьших квадратов, которые не учитывают, что функция спроса на деньги-это лишь одно структурное уравнение внутри целой системы одновременно решаемых уравнений. Это порождает и другие проблемы. Одна из них-это проблема идентификации. Без спецификации функций предложения денег и других уравнений системы невозможно выяснить, идентифицируема ли функция спроса на деньги. Лишь в том случае, когда другие уравнения обладают определенными свойствами, можно получить ответ, выводятся ли расчетные параметры функции спроса из данных, полученных в точке пересечения устойчивой функции подлинного спроса со смещающейся функцией предложения, или смещается сама функция спроса. Только при наличии первой ситуации можно быть уверенным, что эмпирически обнаруживаемая связь между денежным запасом и группой независимых переменных представляет собой эмпирическую функцию спроса. Другой проблемой является ошибка одновременно решаемой системы уравнений. Чтобы решить проблему идентификации, достаточно дать спецификацию других структурных уравнений, убедиться, что эта процедура проделана правильно, и исследовать свойства модели. Но даже если модель такова, что  [c.648]


Неидентифицируемость вовсе не является редким явлением. В самом деле для идентифицируемости, грубо говоря, надо, чтобы количество оцениваемых структурных параметров было бы равно количеству оцененных параметров приведенной формы. Очевидно, однако, что в общем случае структурных параметров больше.  [c.232]

Теперь займемся задачей оценивания системы одновременных уравнений, предположив, что имеющихся ограничений достаточно для идентифицируемости. Для получения оценки максимального правдоподобия структурных параметров (В , FQ, 1о) нужно максимизировать логарифмическую функцию правдоподобия (2.11) с учетом априорных и идентифицируемых ограничений. Такой способ оценивания известен как метод максимального правдоподобия при полной информации (FIML) 1. Поскольку для нахождения FIML-оценок приходится оптимизировать нелинейную функцию, реализация этого метода может оказаться довольно сложной вычислительной задачей.  [c.422]

Если i -e стохастическое уравнение структурной формы идентифицируемо точно, то параметры этого уравнения (коэффициенты уравнения и дисперсия случайной ошибки) восстанавливаются по параметрам приведенной системы однозначно. Поэтому для оценивания параметров такого уравнения достаточно оценить методом наименьших квадратов коэффициенты каждого из уравнений приведенной формы методом наименьших квадратов (отдельно для каждого уравнения) и получить оценку ковариационной матрицы О ошибок в приведенной форме, после чего воспользоваться соотношениями ПГ = В и = ГГОГ, подставляя в них вместо П оцененную матрицу коэффициентов приведенной формы П и оцененную ковариационную матрицу ошибок в приведенной форме А. Такая процедура называется  [c.158]

В более общем случае, когда модель состоит из одновременных уравнений, не удовлетворяющих специальным предположениям о рекур-сивности, существует простой метод оценивания — косвенный метод наименьших квадратов, но он применим лишь к точно идентифицируемым уравнениям. Состоит этот метод в использовании обыкновенного метода наименьших квадратов для оценивания параметров каждого из уравнений структурной формы в отдельности и в последующем выводе оценок структурных параметров с помощью преобразования ВП = —Г, где вместо матрицы П берется матрица оценок параметров приведенной формы П. Элементы матрицы П будут наилучшими линейными несмещенными оценками, однако это свойство не сохраняется при преобразованиях, и полученные оценки структурных параметров, по-видимому, окажутся смещенными. Тем не менее и оценки П, и оценки косвенного метода наименьших квадратов будут состоятельными. Для  [c.375]

Переменные R и экзогенные. Введя их в модель, получим идентифицируемую структурную модель, оценки параметров которой могут быть даны с помощью КМНК.  [c.211]

При рассмотрении вопроса об идентифицируемости параметров структурной ЕСМ естественно выделить отдельно идентификацию коинтегрирующих векторов и идентификацию коэффициентов, связанных с динамической адаптацией, т.е. элементов матриц Ф,Т, ...,Т, а. Поскольку коинтегрирующие соотношения в  [c.353]

Эконометрика (2002) -- [ c.231 ]