Сложным источником дохода можно назвать источник, доход которого является некоторой функцией нескольких случайных величин. Риск получения дохода из такого источника может быть оценен, как указано в главе 4, на основе линеаризации функции случайных аргументов. Напомним, что числовые характеристики функции случайных аргументов определяют путем разложения в ряд Тейлора. Обычно используют линейные приближения характеристик. Линейные оценки для связанных случайных аргументов имеют вид [c.123]
Функция и плотность распределения вероятности. 206 11.32 Числовые характеристики непрерывных случайных величин. 207 [c.7]
Функции случайных величин — это функции, значениями которых являются случайные величины. Для оценки ожидаемых результатов и рисков достаточно определить их числовые характеристики как математическое ожидание, дисперсию, стандартное квадратичное отклонение и коэффициент вариации. Если функция не является случайной и может быть задана аналитически или иным путем, например в форме таблиц, то ее числовые характеристики могут быть легко определены по значениям числовых характеристик входящих в ее состав случайных величин. [c.45]
Стохастической (вероятностной) моделью называют такую модель, в которой имеется неопределенность, т.е. когда условия (ограничения) задачи или критерий оптимизации (целевая функция) или то и другое являются какой-нибудь числовой характеристикой (например, математическим ожиданием) случайных величин. [c.134]
Конкретные числовые характеристики системы управления запасами зависят от вида функции плотности распределения Дх) случайной величины спроса. В качестве примера рассмотрим случай симметричного треугольного распределения спроса, при котором функция плотности распределения получается в виде графика, представленного на рис 25.1А. Очевидно, что этот график получается параллельным при переносе вправо (т.е. заменой х на х — д) графика, изображенного на рис. 25.1Б, при этом функция принимает следующий вид [c.536]
Последовательность наблюдений типа (12.1) принято называть временным рядом. Он имеет два главных отличия от рассматриваемых наблюдений анализируемого признака, образующих случайные выборки а) образующие временной ряд наблюдения л ь х2,. .., хп, рассматриваемые как случайные величины, не являются взаимно независимыми, и, в частности, значение, которое мы получим в момент времени th (k = 1, 2,. .., я), может существенно зависеть от того, какие значения были зарегистрированы до этого момента времени б) наблюдения временного ряда (в отличие от элементов случайной выборки), вообще говоря, не образуют стационарной последовательности, т. е. закон распределения вероятностей k-ro члена временного ряда (случайной величины xh x (tk)) не остается одним и тем же при изменении его номера в частности, от tk могут зависеть основные числовые характеристики случайной переменной xk — ее среднее значение Ex (tk) и дисперсия Dx (tk) (функцию от аргумента /, описывающую зависимость Ел (/) от времени, часто называют трендом временного ряда). [c.362]
В отличие от числовых характеристик случайных величин, представляющих собой определенные числа, характеристики случайных функций являются не числами, а функциями. [c.102]
Величину F(x) называют интегральной функцией распределения величины X. Величина Дх) - дифференциальная функция распределения случайной величины X. Для оценки особенностей законов распределения случайных величин определяют числовые характеристики этих величин. [c.13]
Для любой случайной величины важную роль, помимо функции распределения, играют числовые характеристики ее распределения, важнейшими из которых являются среднее значение (математическое ожидание случайной величины) и дисперсия. Среднее значение является характеристикой положения частотного распределения а дисперсия - мерой ширины или разброса распределения. Во многих практических случаях информация о случайных переменных, содержащаяся в частотном распределении является избыточной. Например, для принятия решения о покупке акций важно, в первую очередь, знать средний доход на них и риск инвестирования в них денег, характеризуемый степенью разброса среднего дохода (дисперсией), что эквивалентно знанию положения и ширины частотного распределения возможных доходов на акции. [c.260]
Это - числовая характеристика (а не функция, на что указывают квадратные скобки) случайной величины X, что означает, что она соответствует всей величине X, а не различным конкретным ее значениям. Другие обозначения среднего значения М Х = <Х> тх = а. [c.261]
Любая из этих величин зависит от множества характеристик, способных принимать различные числовые значения, и в силу этого может рассматриваться как случайная. Задача заключается, очевидно, в том, чтобы определить закон распределения этих величин, т.е. найти функцию, связывающую их значения и вероятности и оценить вероятность, соответствующую критическому значению. [c.233]
В реальных задачах случайные величины предпочитают описывать с помощью лишь нек-рого набора числовых характеристик функции F%(x) или р (х). В эко-номпч. задачах часто используются след, числовые характеристики (для простоты предполагается существо-ванне р5(.г) [c.109]
Числовой характеристикой предпочтений людей на множестве альтернатив, зависящих от случайных величин, выступает полезность. Если обозначить х - альтернативу (например, размер денежного выигрыша в лотерее), м(-) - функцию полезности, определенную на множестве альтернатив, то люди, нейтральные к риску, имеют линейные функции полезности (и = onst > 0, и" = 0 полезность определяется с точностью до монотонного линейного преобразования), склонные к риску - выпуклые (и > 0, и" > 0), а несклонные - вогнутые (и > 0, и " < 0 функции полезности. [c.23]
Смотреть главы в:
Теория экономического анализа -> Числовые характеристики функций случайных величин