Книга посвящена методам приближенного решения задач оптимального управления в достаточно полном объеме от теоретических выкладок до анализа выданных ЭВМ таблиц. Излагается теоретический материал, в основном связанный с важной в расчетах техникой вычисления функциональных производных. Описаны основные конструкции алгоритмов приближенного решения, использующие прямое решение уравнений принципа максимума, вариации в фазовом пространстве и вариации в пространстве управлений. Многочисленные примеры реализации алгоритмов для решения прикладных задач используются для иллюстрации характерных трудностей, методов их анализа, роли различных вычислительных приемов, обеспечивающих эффективность алгоритмов и надежность приближенных решений. [c.4]
Дискретный принцип максимума получается почти по такой же схеме, но вместо дифференциальных уравнений в выкладках участвуют их разностные аппроксимации. И вот здесь появляется упомянутое реальное следствие дискретной теории разностное уравнение для сопряженного уравнения является следствием того или иного выбора аппроксимаций для прямого уравнения и для интеграла в тождестве Лагранжа. Разностная аппроксимация уравнения в вариациях также однозначно определяется выбором аппроксимации исходного уравнения, но это не так важно, так как в вычислительных методах обычно это уравнение не интегрируется. Эту аппроксимацию сопряженного уравнения "мы будем называть согласованной с аппроксимациями исходного уравнения и интеграла в том смысле, что для конечно-разностных решений Sz и ф, полученных по согласованным аппроксимациям соответствующих уравнений, алгебраически точно выполняется тождество Лагранжа (тоже в соответствующей аппроксимации). Это и есть то единственное практическое следствие, которое автор смог извлечь из теории дискретного принципа максимума и которого в своих вычислениях никогда не использовал ни в явной, ни в неявной формах. Автор всегда выбирал для исходного и сопряженного уравнений независимые аппроксимации, причем сопряженное обычно интегрировалось более грубо, с большим шагом по времени. Дело в том, что использование согласованной > аппроксимации связано с определенными техническими неудобствами, необходимость преодоления которых не очевидна. Во всяком случае, автору неизвестны трудности численного решения задач оптимального управления, которые можно было бы преодолеть, используя согласованную аппроксимацию. Чтобы и здесь быть более конкретным, можно все же указать на некоторое следствие использования согласованной аппроксимации. Речь идет о получении минимума функционала с большим числом знаков. Используя для вычисления функциональной производной функцию < >, найденную по произвольной аппроксимации сопряженного уравнения, мы, разумеется, находим не точную производную, а лишь приближенную, искаженную влиянием ошибок аппроксимации. Поэтому получить минимум с очень большой точностью не удастся начиная с некоторого этапа минимизации (например, методом градиента в функциональном пространстве) мы будем в этом случав [c.54]
В 18—23 были описаны методы построения минимизирующей последовательности управлений, использующие лишь первые производные входящих в задачу функционалов. Поэтому эти методы называют методами первого порядка. Давно было замечено, что при решении задач поиска минимума методом первого порядка сходимость оказывается очень медленной в окрестности точки минимума. Это и понятно ведь в этой окрестности, грубо говоря, первая производная минимизируемого функционала обращается в нуль, и приращение его при вариации аргумента (управления) определяется вторым членом разложения. Стремясь повысить скорость поиска и получить более точные результаты без существенного увеличения времени счета, естественно приходят к идее использования в вычислениях также вторых производных от функционалов задачи. Кроме того, с этим же связаны и надежды повысить эффективность поиска в условиях применения штрафных функций, когда сходимость методов первого порядка оказывается очень медленной даже сравнительно далеко от искомой точки минимума. Методы второго порядка разработаны не так подробно, как методы первого порядка, а опыт их фактического применения совсем невелик. Ниже будет описана общая схема метода второго порядка и рассмотрены возникающие при его реализации вычислительные проблемы. [c.201]
Посредством описанных выше методов анкетирования, традиционных опросов с применением опросных листов, а также панельных исследований — можно получать в основном количественную информацию, обработка которой ведется с помощью процедур упорядочения (например, классификации), вычислений и т.п., что позволяет вычислять разнообразные производные показатели, подробно освещающие изучаемые явления, процессы, объекты и др. Качественную информацию также можно получать посредством применения этих методов, например посредством включения в анкеты или опросные листы открытых вопросов, но в значительно меньших объемах. Все-таки эти методы в большей степени предназначены именно для получения количественной информации. Для получения качественной информации чаще всего используются такие методы, как фокус-группы, глубокие опросы (интервью), методы проецирования и наблюдения. [c.204]
При более последовательном подходе для улучшения процесса обучения можно использовать информацию о производных второго порядка от функции невязки. Соответствующие методы оптимизации называются квадратичными. Вся указанная информация собрана в матрице гессиана Н, имеющей размеры Nw х Nw, где Nw — число весов. Эта матрица содержит информацию о том, как изменяется градиент при малых смещениях по различным направлениям в пространстве весов. Прямое вычисление матрицы требует большого времени, поэтому разработаны методы, позволяющие избежать вычисления и хранения матрицы (спуск по сопряженному градиенту, масштабированный метод сопряженных градиентов (см. [197]), RBa kProp (см. [212]), квази-ньютоновский метод, метод Левенбер-га-Маркара). [c.32]
Отметим основное отличие данной реализации метода динамического программирования от схемы вычислений 15. Оно связано с использованием интерполяции функции Беллмана F (х1, х ) с узлов сетки. Этим снимается ограничение на шаг сетки в фазовом пространстве типа h=o (t), необходимое в схеме метода Н. Н. Моисеева. Вместе с тем интерполяция является источником определенных ошибок, тем более, что сетки приходится брать сравнительно грубые. Кроме того, используя интерполяцию, неявно предполагают наличие у функции Беллмана таких свойств гладкости, которых может и не быть. Известны простые примеры задач, в которых функция Беллмана разрывна, а наличие разрывов производной может считаться почти общим явлением. Схема вычислений 15 может быть (при h=0 (t2)) обоснована без всяких предположений о свойствах функции Беллмана. Что касается реализации алгоритма на ЭВМ, то в данном случае наибольшие ограничения связаны с ресурсом памяти. Вычисления в [4] тре= буют N таблиц по 30x30 величин, однако при вычислении очередной функции Fn (х1, х2-) в оперативной памяти нужно иметь только две такие таблицы. [c.307]
Смотреть страницы где упоминается термин Методы, не использующие вычисления производных
: [c.73] [c.188] [c.110]Смотреть главы в:
Прикладная статистика Исследование зависимостей -> Методы, не использующие вычисления производных