Методы, не использующие вычисления производных

Следующий этап связан с использованием высших производных (формула Тейлора), и завершается этот этап обзором метода в целом.Далее рассматриваются некоторые вопросы численной характеристики функций — численных методов (приложение дифференциального исчисления к приближенным вычислениям). На этом этапе устанавливается погрешность уклонения ломаных из секущих, ломаной из касательной, кусочных кривых из парабол Тейлора более высоких степеней от данной функции в зависимости от ее дифференциальных свойств, и сравнивается погрешность. Для простоты рассматривается случай равноотстоящих узлов. Тем самым, устанавливаются границы применимости метода дифференциального исчисления. В качестве дальнейшего развития этого этапа можно рассматривать и другие приближающие модели, конструирование их, руководствуясь, например, следующей схемой 1.Какие узлы мы мы будем использовать 2. Какой класс приближающих функции будем использовать 3. Какой критерий согласия мы применим 4. Какую точность мы хотим  [c.12]


Книга посвящена методам приближенного решения задач оптимального управления в достаточно полном объеме от теоретических выкладок до анализа выданных ЭВМ таблиц. Излагается теоретический материал, в основном связанный с важной в расчетах техникой вычисления функциональных производных. Описаны основные конструкции алгоритмов приближенного решения, использующие прямое решение уравнений принципа максимума, вариации в фазовом пространстве и вариации в пространстве управлений. Многочисленные примеры реализации алгоритмов для решения прикладных задач используются для иллюстрации характерных трудностей, методов их анализа, роли различных вычислительных приемов, обеспечивающих эффективность алгоритмов и надежность приближенных решений.  [c.4]

Дискретный принцип максимума получается почти по такой же схеме, но вместо дифференциальных уравнений в выкладках участвуют их разностные аппроксимации. И вот здесь появляется упомянутое реальное следствие дискретной теории разностное уравнение для сопряженного уравнения является следствием того или иного выбора аппроксимаций для прямого уравнения и для интеграла в тождестве Лагранжа. Разностная аппроксимация уравнения в вариациях также однозначно определяется выбором аппроксимации исходного уравнения, но это не так важно, так как в вычислительных методах обычно это уравнение не интегрируется. Эту аппроксимацию сопряженного уравнения "мы будем называть согласованной с аппроксимациями исходного уравнения и интеграла в том смысле, что для конечно-разностных решений Sz и ф, полученных по согласованным аппроксимациям соответствующих уравнений, алгебраически точно выполняется тождество Лагранжа (тоже в соответствующей аппроксимации). Это и есть то единственное практическое следствие, которое автор смог извлечь из теории дискретного принципа максимума и которого в своих вычислениях никогда не использовал ни в явной, ни в неявной формах. Автор всегда выбирал для исходного и сопряженного уравнений независимые аппроксимации, причем сопряженное обычно интегрировалось более грубо, с большим шагом по времени. Дело в том, что использование согласованной > аппроксимации связано с определенными техническими неудобствами, необходимость преодоления которых не очевидна. Во всяком случае, автору неизвестны трудности численного решения задач оптимального управления, которые можно было бы преодолеть, используя согласованную аппроксимацию. Чтобы и здесь быть более конкретным, можно все же указать на некоторое следствие использования согласованной аппроксимации. Речь идет о получении минимума функционала с большим числом знаков. Используя для вычисления функциональной производной функцию < >, найденную по произвольной аппроксимации сопряженного уравнения, мы, разумеется, находим не точную производную, а лишь приближенную, искаженную влиянием ошибок аппроксимации. Поэтому получить минимум с очень большой точностью не удастся начиная с некоторого этапа минимизации (например, методом градиента в функциональном пространстве) мы будем в этом случав  [c.54]


В 18—23 были описаны методы построения минимизирующей последовательности управлений, использующие лишь первые производные входящих в задачу функционалов. Поэтому эти методы называют методами первого порядка. Давно было замечено, что при решении задач поиска минимума методом первого порядка сходимость оказывается очень медленной в окрестности точки минимума. Это и понятно ведь в этой окрестности, грубо говоря, первая производная минимизируемого функционала обращается в нуль, и приращение его при вариации аргумента (управления) определяется вторым членом разложения. Стремясь повысить скорость поиска и получить более точные результаты без существенного увеличения времени счета, естественно приходят к идее использования в вычислениях также вторых производных от функционалов задачи. Кроме того, с этим же связаны и надежды повысить эффективность поиска в условиях применения штрафных функций, когда сходимость методов первого порядка оказывается очень медленной даже сравнительно далеко от искомой точки минимума. Методы второго порядка разработаны не так подробно, как методы первого порядка, а опыт их фактического применения совсем невелик. Ниже будет описана общая схема метода второго порядка и рассмотрены возникающие при его реализации вычислительные проблемы.  [c.201]

Посредством описанных выше методов анкетирования, традиционных опросов с применением опросных листов, а также панельных исследований — можно получать в основном количественную информацию, обработка которой ведется с помощью процедур упорядочения (например, классификации), вычислений и т.п., что позволяет вычислять разнообразные производные показатели, подробно освещающие изучаемые явления, процессы, объекты и др. Качественную информацию также можно получать посредством применения этих методов, например посредством включения в анкеты или опросные листы открытых вопросов, но в значительно меньших объемах. Все-таки эти методы в большей степени предназначены именно для получения количественной информации. Для получения качественной информации чаще всего используются такие методы, как фокус-группы, глубокие опросы (интервью), методы проецирования и наблюдения.  [c.204]


При более последовательном подходе для улучшения процесса обучения можно использовать информацию о производных второго порядка от функции невязки. Соответствующие методы оптимизации называются квадратичными. Вся указанная информация собрана в матрице гессиана Н, имеющей размеры Nw х Nw, где Nw — число весов. Эта матрица содержит информацию о том, как изменяется градиент при малых смещениях по различным направлениям в пространстве весов. Прямое вычисление матрицы требует большого времени, поэтому разработаны методы, позволяющие избежать вычисления и хранения матрицы (спуск по сопряженному градиенту, масштабированный метод сопряженных градиентов (см. [197]), RBa kProp (см. [212]), квази-ньютоновский метод, метод Левенбер-га-Маркара).  [c.32]

Отметим основное отличие данной реализации метода динамического программирования от схемы вычислений 15. Оно связано с использованием интерполяции функции Беллмана F (х1, х ) с узлов сетки. Этим снимается ограничение на шаг сетки в фазовом пространстве типа h=o (t), необходимое в схеме метода Н. Н. Моисеева. Вместе с тем интерполяция является источником определенных ошибок, тем более, что сетки приходится брать сравнительно грубые. Кроме того, используя интерполяцию, неявно предполагают наличие у функции Беллмана таких свойств гладкости, которых может и не быть. Известны простые примеры задач, в которых функция Беллмана разрывна, а наличие разрывов производной может считаться почти общим явлением. Схема вычислений 15 может быть (при h=0 (t2)) обоснована без всяких предположений о свойствах функции Беллмана. Что касается реализации алгоритма на ЭВМ, то в данном случае наибольшие ограничения связаны с ресурсом памяти. Вычисления в [4] тре= буют N таблиц по 30x30 величин, однако при вычислении очередной функции Fn (х1, х2-) в оперативной памяти нужно иметь только две такие таблицы.  [c.307]

Смотреть страницы где упоминается термин Методы, не использующие вычисления производных

: [c.73]    [c.188]    [c.110]