Раздел I посвящен вероятностно-статистическим методам моделирования экономических систем, а также теоретическим основам вероятностных методов. Авторы излагают те вопросы теории вероятностей и математической статистики, знание которых является необходимым минимумом для усвоения материала, рассматриваемого в последующих главах. [c.3]
Значительное место отведено применению марковских случайных процессов для моделирования экономических систем, а также использованию аппарата теории массового обслуживания для решения финансово-экономических задач. Далее авторы рассматривают возможности применения метода статистического моделирования (метода Монте-Карло). [c.3]
Вероятностно-статистические методы моделирования экономических систем [c.5]
Арсенал средств моделирования достаточно широк от простейших аналитических моделей, состоящих из одного уравнения с несколькими переменными, до сложнейших концептуальных комплексов когнитивного моделирования развития целых социально-экономических систем. Имитационное, в частности, статистическое моделирование [c.221]
Метод статистического моделирования (или метод Монте-Карло) — это способ исследования поведения вероятностных систем (экономических, технических и т. д.) в условиях, когда не известны в полной мере внутренние взаимодействия в этих системах. [c.118]
В учебном пособии рассмотрены основные разделы курса Имитационное моделирование место имитационного моделирования (ИМ) в составе экономико-математических методов, общая характеристика имитационного моделирования, структура имитационных моделей, основные этапы процесса имитации, модели глобальных систем и экономических систем масштаба предприятия, использование ИМ в управлении предприятием, статистическое ИМ и экспериментальная оптимизация, управленческие имитационные игры и организационные аспекты ИМ. [c.2]
В настоящее время существует большое количество прикладных программных систем, включающих в себя возможности статистического анализа и моделирования экономических характеристик. При этом наиболее используемыми являются [7] [c.133]
При имитационном моделировании применяется много математических схем конечные и вероятностные автоматы, системы массового обслуживания (СМО), агрегативные системы, системы, описываемые дифференциальными уравнениями и марковскими процессами, методы общей теории систем, а также специально сконструированные эвристические подходы для конкретных типов объектов моделирования. Применительно к экономическим объектам и процессам наиболее часто используются, на наш взгляд, математические схемы СМО, агрегативные системы, а также эвристические подходы. Кроме этого, отдельные элементы метода статистических испытаний или метода Монте-Карло, которые лежат в основе имитационного моделирования, применяются достаточно часто при расчете различных параметров для других типов моделей — эконометрических, моделей кривых роста и т.п. В данной главе будут рассмотрены имитационные модели СМО и агрегативные имитационные модели. Естественно, приведенные ниже математические схемы ни в коей мере не исчерпывают их перечень. Кроме того, часто при имитационном моделировании применяется сочетание различных математических подходов, поэтому дать весь перечень применяемых математических схем затруднительно, да и вряд ли целесообразно. Главное — наличие имитационного мышления при выборе тех или иных математических подходов. [c.229]
Для определения перспектив развития рынка используется метод математического моделирования рыночных процессов. В общем виде экономико-статистическая или экономико-математическая модель может быть охарактеризована как система показателей, отражающая те многочисленные признаки, которые свойственны определенной совокупности элементов, участвующих в конкретном экономическом процессе. В качестве параметров системы выбираются важнейшие показатели, характеризующие структуру рыночного процесса. В экономико-математических моделях показатели связаны в единую систему функциональных уравнений (неравенств) различного типа. [c.54]
При статистическом моделировании экономических ситуаций часто необходимо построение систем уравнений, когда одни и те же переменные в различных регрессионных уравнениях могут одновременно выступать, с одной стороны, в роли результирующих, объясняемых переменных, а с другой стороны - в роли объясняющих переменных. Такие системы уравнений принято называть системами одновременных уравнений. При этом в соотношения могут входить переменные, относящиеся не только к текущему периоду t, но и к предшествующим периодам. Такие переменные называются лаго-выми. Переменные за предшествующие годы обычно выступают в качестве объясняющих переменных. [c.356]
На основании принятого плана производства рассчитывается план-график запуска-выпуска партий деталей, полуфабрикатов и готовых изделий. Этот план-график согласуется с план-графиком закупки материалов и комплектующих изделий. Далее осуществляется оперативное управление и учет выполнения планов производства и поставок, складской учет и управление материально-производственными запасами. Метод MRP использует развитый управленческий учет и систему бухгалтерского учета международного класса (GAAP, IAS). Для принятия управленческих решений применяются информационные технологии анализа и статистического моделирования, а также оптимизационные расчеты. По всем производственным хозрасчетным подразделениям формируются бюджеты, для анализа выполнения которых ведется расчет нормативных и фактических затрат на производство, а также нормативной и фактической себестоимости продукции. Непрерывно осуществляется оперативное формирование бухгалтерского баланса и анализ экономических и финансовых показателей деятельности предприятия. [c.22]
Место имитационного моделирования в составе экономико-математических методов. 2.Мысленные и машинные модели социально экономических систем. 3.Социально-экономические процессы как объекты моделирования. 4. Структура и классификация имитационных моделей. 5.Основные этапы процесса имитации. 6.Определение системы, постановка задачи, формулирование модели и оценка ее адекватности. 7.Экспериментирование с использованием ИМ, механизм регламентации, интерпретация и реализация результатов. 8.Организационные аспекты имитационного моделирования. 9.Основные компоненты динамической мировой модели Форрестера. 10.Концепция петля обратной связи . И.Структура модели мировой системы. 12. Каноническая модель предприятия. 13.Моделирование затрат предприятия. 14.Моделирование налогообложения. 15.Использование имитационного моделирования для планирования. 16.Содержание процессов стратегического и тактического планирования. 17.Основные модули системы поддержки принятия решений. 18.Сущность статистического ИМ. 19.Метод Монте-Карло. 20.Идентификация закона распределения. 21.Классификация систем МО. 22.Сущность метода экспериментальной оптимизации. 23.Формирование концептуальной модели. 24.Принципы выбора критерия оптимальности, разработка алгоритма оптимизации. 25.Эвристические алгоритмы поиска решений. 26.Управленческие имитационные игры, их природа и сущность. 27. Структура и порядок разработки управленческих имитационных игр. [c.121]