Оценка максимального правдоподобия в линейной модели

Применяя метод максимального правдоподобия (см. 2.7, 3.4) для оценки нормальной обобщенной линейной модели регрессии, можно показать, что оценки максимального правд опо-  [c.187]


Оценка максимального правдоподобия в линейной модели 251  [c.251]

И здесь возникает ситуация, когда оценка максимального правдоподобия для /3 и а даже при выполнении стандартных предположений состоятельна только если Т —> °°, а при конечном Т и N —> °° она несостоятельна. Мы встречались уже с такой ситуацией в рамках OLS-оценивания линейной модели с фиксированными эффектами. Только там при несостоятельности оценок для а оценка для /3 оставалась все же состоятельной, тогда как здесь несостоятельность оценок для ai в общем случае переносится и на оценку для /3. Одним из исключений является линейная модель вероятности, в которой вероятность P yit = 1 xit моделируется как линейная функция от объясняющих переменных.  [c.317]

Модели AR H и GAR H удовлетворяют всем условиям классической модели, и метод наименьших квадратов позволяет получить оптимальные линейные оценки. В то же время можно получить более эффективные нелинейные оценки методом максимального правдоподобия. В отличие от модели с независимыми нормально распределенными ошибками регрессии в AR H-модели оценки максимального правдоподобия отличаются от оценок, полученных методом наименьших квадратов.  [c.217]


Шестая часть посвящена оценкам максимального правдоподобия, которые, конечно, являются идеальным объектом для демонстрации мощи развиваемой техники. В первых трех главах исследуется несколько моделей, среди которых есть многомерное нормальное распределение, модель с ошибками в переменных и нелинейная регрессионная модель. Рассматриваются методы работы с симметрией и положительной определенностью, специальное внимание уделено информационной матрице. Вторая глава этой части содержит обсуждение одновременных уравнений при условии нормальности ошибок. В ней рассматриваются проблемы оценивания и идентифицируемости параметров при различных (не)линейных ограничениях на параметры. В этой части рассматривается также метод максимального правдоподобия с полной информацией (FIML) и метод максимального правдоподобия с ограниченной информацией (LIML), особое внимание уделено выводу асимптотических ковариационных матриц. Последняя глава посвящена различным проблемам и методам психометрики, в том числе методу главных компонент, мультимодальному компо-  [c.16]

Здесь ut = t — Ae -i- Уравнение (11.9) линейно по комбинациям параметров, через которые эти параметры можно выразить. Однако (11.9) содержит лагированную эндогенную переменную и ошибки, не удовлетворяющие условиям классической модели линейной регрессии. Поэтому можно показать, что МНК-оценки коэффициентов уравнения являются несостоятельными. Для получения состоятельных оценок можно применить метод инструментальных переменных (п. 8.1), взяв, например, Xt— в качестве инструмента для yt-i, или воспользоваться методом максимального правдоподобия (глава 10).  [c.268]


Смотреть страницы где упоминается термин Оценка максимального правдоподобия в линейной модели

: [c.386]