Положительно определенная

Заметим, что ц представляет собой квадратную матрицу порядка / , где р — число регрессоров X. (Напомним (см. 11.8), что квадратная матрица А называется большей , чем квадратная матрица В, если их разность А— В есть положительно определенная матрица.)  [c.244]


Если матрица (10.12) является положительно определенной, т. е. имеет только положительные собственные значения, то модель (10.2) лучше оценивает параметр р, даже если на самом деле верна модель (10.1).  [c.246]

Можно показать, что матрица вида (10.12) является положительно определенной в том и только том случае, если выполняется условие  [c.247]

Матрица А 1, обратная к А, также симметрическая и положительно определенная.  [c.273]

Отмеченные выше условия, которым удовлетворяют функции Jj и Xjj приводят к тому, что сумма, стоящая под знаком интеграла, положительно определенная.  [c.54]

Показатель характеризует период времени от начала реализации проекта до того момента, начиная с которого текущее значение чистой дисконтированной стоимости проекта станет положительным и не изменит этот знак до окончания срока жизни проекта. Проще всего производить расчет срока окупаемости на основании элементов чистого денежного потока Р(/). Считаем, что до момента времени и, элементы потока отрицательны, а начиная с момента и,+1 — положительны. Определение показателя ДСО осуществляется в следующей последовательности  [c.286]


Ниже приводится важная теорема, касающаяся положительно определенных матриц.  [c.36]

Пусть А — положительно определенная матрица, а В — неотрицательно определенная. Тогда  [c.45]

Доказательство. Пусть Л — положительно определенная диагональная матрица, такая что  [c.45]

Пусть А — положительно определенная матрица и В — симметрическая матрица того же порядка. Тогда существуют невырожденная матрица Р и диагональная матрица Л, такие что  [c.46]

Для двух симметрических матриц А и В мы будем писать А В (или В Л), если матрица А — В — неотрицательно определенная, и А > В (или В < Л), если А — В — положительно определенная.  [c.46]

Пусть АиВ — положительно определенные матрицы порядка п. Тогда А > В тогда и только тогда, когда В 1 > А 1.  [c.46]

Если А — В — положительно определенная, то / — Л — тоже положительно определенная и, следовательно, 0 < Л < 1 (г = 1,. . . , п). Это означает, что Л"1 — I — положительно определенная и, следовательно, В 1 — А 1 — положительно определенная. П  [c.47]

Пусть Аи В — положительно определенные матрицы, причем А — В — неотрицательно определенная. Тогда А В, причем неравенство выполняется как равенство тогда и только тогда, когда А = В.  [c.47]

Пусть А — положительно определенная матрица с единичным определителем, А = 1. Если при этом / — А — неотрицательно определенная, то А = I.  [c.47]

ТРИ ДОПОЛНИТЕЛЬНЫХ РЕЗУЛЬТАТА ДЛЯ ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННЫХ МАТРИЦ  [c.47]

Пусть А — положительно определенная матрица порядка п, а В — квадратная матрица порядка п + 1 вида  [c.47]

Ср. упр. 11.2.) Утверждение (i) теоремы — прямое следствие (5). Чтобы доказать (п), отметим, что В > 0 тогда и только тогда, когда а — b A lb > О (из (5)), что выполняется тогда и только тогда, когда матрица Р ВР положительно определена (из (4)). Это, в свою очередь, верно тогда и только тогда, когда В — положительно определенная. П  [c.48]


По индукции из теоремы 27 немедленно вытекает следующий результат. Теорема 28 Если А = (aij) — положительно определенная матрица порядка п, то  [c.48]

Симметрическая матрица А порядка п является положительно определенной тогда и только тогда, когда все ее главные миноры Ak (k = 1,. . . , п) положительны.  [c.48]

Если А — положительно определенная матрица порядка п, то, в соответствии с теоремой 28,  [c.49]

Доказать, что если А — положительно определенная матрица, то А + А 1 — 21 — неотрицательно определенная.  [c.51]

Доказать, что собственные значения Л матрицы (А + В) 1 А, где А — неотрицательно определенная, а В — положительно определенная, удовлетворяют соотношению 0 Л < 1.  [c.51]

Монотонность энтропийной сложности) Пусть Ап — положительно определенная матрица порядка п. Определим  [c.51]

Пусть Лп 1 — положительно определенная матрица порядка п + 1, такая что  [c.51]

Пусть А — положительно определенная, X X = I и В = XX А—АХХ . Доказать, что  [c.51]

Пусть А — положительно определенная (и, значит, симметрическая) матрица порядка п, а ф Rn — > И определяется как ф(х) = х Ах. Находим первый дифференциал  [c.167]

Пусть а — п х 1 вектор и А — положительно определенная матрица порядка п. Доказать, что  [c.176]

Имеется ряд необходимых и достаточных условий положительной определенности квадратичной формы при линейных ограничениях, и одно из этих уело-  [c.184]

Таким образом, и здесь положительная определенность матрицы (10.12) означает ббльшую предпочтительность короткой модели (10.2) — даже, если истинное значение параметра у не  [c.246]

Понятие положительно (неотрицательно) определенной симметрической матрицы А тесно связано с понятием положительно определенной (полуопределенной) квадратичной формы.  [c.273]

Определитель этой матрицы называется гессианом. Характеристика Г.м. (ее отрицательная или положительная определенность и полуопределенность) служит условием для определения вида стационарной точки является ли она соответственно максимумом, минимумом или седловой точкой в задаче оптимизации функции.  [c.60]

Определение 1.2. Мерой близости р(-) произвольных элементов Р,, Р2еЛ" называется некоторый положительно определенный в Л"1 и  [c.19]

Шестая часть посвящена оценкам максимального правдоподобия, которые, конечно, являются идеальным объектом для демонстрации мощи развиваемой техники. В первых трех главах исследуется несколько моделей, среди которых есть многомерное нормальное распределение, модель с ошибками в переменных и нелинейная регрессионная модель. Рассматриваются методы работы с симметрией и положительной определенностью, специальное внимание уделено информационной матрице. Вторая глава этой части содержит обсуждение одновременных уравнений при условии нормальности ошибок. В ней рассматриваются проблемы оценивания и идентифицируемости параметров при различных (не)линейных ограничениях на параметры. В этой части рассматривается также метод максимального правдоподобия с полной информацией (FIML) и метод максимального правдоподобия с ограниченной информацией (LIML), особое внимание уделено выводу асимптотических ковариационных матриц. Последняя глава посвящена различным проблемам и методам психометрики, в том числе методу главных компонент, мультимодальному компо-  [c.16]

Доказательство. По теореме 23 существует невырожденная матрица Р и положительно определенная диагональная матрица Л = diag(Ai,. . . , Лп), такие что  [c.46]

Доказательство (существование). Пусть А — т х п матрица с г (А) = г. Если г = 0, тоЛ = 0,и для Л+ = 0 выполнены все четыре условия определения. Поэтому можно считать, что г > 0. В силу теоремы 1.16 существуют полуортогональные матрицы S и Т и положительно определенная диагональная матрица Л порядка г, такие что  [c.60]

Таким образом, х Ах > 0 для всех х Г < => Q1AQ — положительно определенная матрица -<=> С > 0 (k = 1,.. . , п — га) < => (—l)m Am+/g > О (k = 1,. . . , п — га).  [c.88]

Эконометрика начальный курс (2004) -- [ c.0 ]