Область определения решающих правил в многоэтапных задачах линейного стохастического программирования >с безусловными вероятностными ограничениями может быть записана следующим образом [c.200]
Заметим, что треугольная форма матрицы условий так же, как и детерминированный характер коэффициентов с,-, не использованы для доказательства эквивалентности стохастической задачи с безусловными вероятностными ограничениями и задачи (4.11) — (4.13) линейного программирования. При решающих правилах нулевого порядка вывод об эквивалентности этих задач справедлив для произвольных детерминированных матриц условий и при случайных параметрах j. [c.201]
В литературе исследуются и (при некоторых предположениях относительно распределения случайных параметров условий задачи) решаются задачи с безусловными вероятностными ограничениями, в которых решающие правила заранее предполагаются линейными. Решение многоэтапных стохастических задач с безусловными ограничениями при достаточно общих предположениях относительно допустимых решающих правил требует преодоления серьезных теоретических и вычислительных трудностей. В ряде случаев исследование упрощается при сведении задачи с безусловными статистическими ограничениями к эквивалентной стохастической задаче с условными статистическими ограничениями. [c.201]
Как мы видели, вычисление априорных решающих правил линейной многоэтапной стохастической задачи с условными вероятностными ограничениями сводится к решению задачи вида (1.6) — (1.8). Условная функция распределения компонент вектора bi при фиксированном наборе со1 -1 предполагается известной. Однако вычисление [c.239]
Рассмотрим многоэтапную линейную стохастическую задачу с условными вероятностными ограничениями вида (1.3) — (1.5). В предположении, что задача решается в априорных решающих правилах, можно придать ей в ид (1.6) — (1.8). [c.243]
Сформулируем условия, гарантирующие кусочную линейность оптимальных решающих правил линейных многоэтапных задач стохастического программирования с условными вероятностными ограничениями. [c.249]
Отметим, что многоэтапные задачи стохастического программирования не являются тривиальными обобщениями двухэтапных задач. Многие результаты, справедливые для двухэтапных задач общего вида, неверны для многоэтапных. Например, оптимальные решающие правила линейных двухэтапных задач с вероятностными ограничениями — кусочно-линейные функции от некоторых случайных параметров условий задачи. Для многоэтапных задач это утверждение, вообще говоря, неверно [70]. [c.256]
В настоящей главе обсуждаются методы построения решающих правил для одноэтапных задач стохастического программирования, а для отдельных моделей приводятся и явные выражения для решающих правил. В 1 рассматриваются частные модели первого класса, в которых предполагается, что решающие правила — линейные функции случайных составляющих условий задачи. Вычисление параметров решающих правил сводится к задачам выпуклого программирования. Параграф 2 посвящен изучению. М-модели с вероятностным ограничением общего вида. Относительно решающего правила л (со) не делается никаких предположений, кроме того, что л (со)—измеримая вектор-функция на множестве X произвольной структуры, на котором она определена. В 3 метод построения решающих правил из предыдущего параграфа обобщается на М-модель с конечнозначным ограничением — с условием, ограничивающим математическое ожидание случайной функции от х, принимающей конечное число значений. Таким условием может быть аппроксимировано любое статистическое ограничение. В 4 построены решающие правила (точнее, решающие таблицы) дляч Р-мо-дели с вероятностными ограничениями общего вида. В 5 рассматривается стохастическая задача со смешанными ограничениями. Эта модель отличается от задачи 4 дополнительными условиями, которые могут существенно изменить структуру решения. В 6—8 построены решающие правила для одноэтапных задач стохастического программирования со статистическими ограничениями достаточно общего вида. Модель, изученная в 6, представляет собой стохастический аналог общей задачи линейного программирования с двухсторонними ограничениями. Модель из 7 — стохастический аналог общей задачи квадратичного программирования. Модель, исследованная в 8, является стохастическим аналогом частной задачи выпуклого программирования с квадратичной целевой функцией и квадратичными ограничениями. Заключительный параграф главы ( 9) посвящен итеративным методам построения решающих правил одноэтапных задач стохастического программирования. [c.84]
Настоящая глава посвящена многоэтапным стохастическим задачам с условными ограничениями и априорными решающими правилами. Качественный анализ таких задач связан с существенно большими трудностями, чем исследование стохастических задач с апостериорными решающими правилами. В общем случае для задач с априорными решающими правилами несправедливы теоремы двойственности, подобные тем, которые доказаны в предыдущей главе для задач с апостериорными решениями. Во многих случаях детерминированные эквиваленты задач с априорными решающими правилами оказываются многоэкстремальными моделями. Трудности, с которыми сопряжено исследование таких моделей, вынуждают сузить диапазон рассматриваемых задач по сравнению с кругом задач, обсуждаемых в предыдущей главе. Мы ограничимся здесь1 главным образом линейными задачами с условными вероятностными ограничениями. [c.233]
Приведем некоторые качественные характеристики важного частного класса многоэтапных задач стохастического программирования с априорными решающими Правилами. Речь идет о многоэтапных линейных стохастических задачах с условными вероятностными ограничениями. Компоненты вектор-функции i f (u)fe, xk) представляют собой в рассматриваемом классе задач условные характеристические функции полупространств, определяемых строками неравенств [c.234]
Однако при некоторых дополнительных допущениях построение решающих правил удается, тем не менее, провести. Проиллюстрируем эти соображения на примере трехэтапной линейной задачи с условными вероятностными ограничениями. [c.247]
В (308] и 169] утверждалось, что оптимальные решающие правила Xs ( oft-1) многоэтапных линейных стохастических задач с условными вероятностными ограничениями представляют собой кусочно-линейные функции от F 1 (I—afe( oft-1)) и решающих правил предшествующих этапов. В [70] указано, что сформулированное утверж--дение, тривиальное для двухэтапной задачи, вообще говоря, несправедливо при числе этапов, большем двух. Там же построен соответствующий пример. В последующей работе Э10] авторы привели некоторые условия, при которых, по их мнению, оптимальные решающие правила многоэтапных задач кусочно-линейны. Можно, однако, построить задачи, удовлетворяющие требованиям из [310], оптимальные решающие правила которых тем не менее не кусочно-линейны. [c.249]