Многоэтапные задачи стохастического с безусловными ограничениям

В многоэтапных задачах упомянутого типа предполагается, что на каждом последующем этапе требуется полностью компенсировать невязки, связанные с принятыми решениями и реализованными значениями параметров условий. Перспективным обобщением многоэтапных задач с жесткими условиями являются многоэтапные задачи стохастического программирования с безусловными и условными вероятностными или статистическими ограничениями. <В задачах этого класса требуется,, чтобы на каждом этапе вероятность удовлетворения ограничений превышала некоторую заранее заданную величину или чтобы математические ожидания некоторых функций от невязок условий были бы ограничены заданными числами или функциями от наблюденных на предыдущих этапах значений случайных параметров. Кроме того, на каждом этапе могут быть заданы и жесткие ограничения.  [c.14]


Настоящая глава посвящена не технологии математического обеспечения (в указанном смысле), а математическим вопросам, связанным с постановкой задач и построением решающих правил. В 1 вводятся некоторые вспомогательные понятия, необходимые для формальной постановки и обсуждения многоэтапных задач стохастического программирования. Параграф 2 посвящен многоэтапным стохастическим задачам с условными ограничениями. В 3 обсуждается задача -отдельного этапа многоэтапной задачи -с условными статистическими ограничениями. В 4 рассматриваются многоэтапные задачи стохастического программирования с безусловными ограничениями. В 5 изучаются многоэтапные стохастические задачи в жесткой постановке. В заключительном параграфе главы (см. 6) сравниваются различные информационные структуры и изучается роль информации при анализе многоэтапных стохастических задач.  [c.193]


Многоэтапная задача стохастического программирования с безусловными статистическими ограничениями записывается в виде  [c.197]

В литературе исследуются и (при некоторых предположениях относительно распределения случайных параметров условий задачи) решаются задачи с безусловными вероятностными ограничениями, в которых решающие правила заранее предполагаются линейными. Решение многоэтапных стохастических задач с безусловными ограничениями при достаточно общих предположениях относительно допустимых решающих правил требует преодоления серьезных теоретических и вычислительных трудностей. В ряде случаев исследование упрощается при сведении задачи с безусловными статистическими ограничениями к эквивалентной стохастической задаче с условными статистическими ограничениями.  [c.201]

Таким образом, запись (1.4) — (1.6) включает в себя и задачи с вероятностными ограничениями. Некоторые усложнения позволяют в аналогичной форме записывать и многоэтапные стохастические задачи с условными и безусловными ограничениями. 10  [c.10]

Соотношения между решающими правилами задач стохастического программирования с условными и безусловными статистическими ограничениями определяются следующей теоремой, являющейся естественным обобщением утверждения, установленного в [340] для частной линейной многоэтапной задачи управления в условиях неполной информации.  [c.198]

Теорема 4.1. Пусть А — множество допустимых решающих правил (апостериорных пли априорных) многоэтапной стохастической задачи с безусловными статистическими ограничениями  [c.198]

Рассмотрим частный класс многоэтапных стохастических задач с безусловными вероятностными ограничениями. Пусть г )о(а>", хп) =  [c.199]


Область определения решающих правил в многоэтапных задачах линейного стохастического программирования >с безусловными вероятностными ограничениями может быть записана следующим образом  [c.200]

Задача (3.92) — (3.96) является задачей многоэтапного стохастического программирования, модель которой помимо критерия оптимальности (3.92) содержит условия неотрицательности переменных (3.96), детерминированные (3.93), жесткие вероятностные (3.94) и безусловно статистические (3.95) ограничения.  [c.78]

Теория многоэтапного стохастического программирования еще слабо развита. Конструктивных методов решения задач достаточно общего вида в настоящее время нет. Имеются лишь методы решения частных классов многоэтапных стохастических задач с условными или безусловными вероятностными ограничениями. Чтобы расширить круг приложений разрабатываемых конструктивных вычислительных методов, естественно попытаться установить связь между задачами с условными и безусловными статистическими ограничениями, отвечающими одним и тем же функциям фо(ы", хп) и г з/((сой, xh), k = ],. .., п.  [c.198]

Настоящая монография содержит пятнадцать глав. В гл. 1, носящей вводный характер, классифицируются постановки задач стохастического программирования, приводится краткая историческая оправка и излагается вспомогательный математический аппарат. Глава 2 посвящена анализу постановок различных технических и экономических прикладных задач управления в условиях неполной информации. Содержание последующих девяти глав связано с активным подходом к стохастическому программированию — (формальной основой для выбора решений в условиях неполной информации. В гл. 3—5 исследуются од-ноэтапные стохастические задачи с вероятностными и статистическими ограничениями, решаемые в чистых и смешанных стратегиях, в априорных и апостериорных решающих правилах и решающих распределениях. Главы 6—8 посвящены теории и вычислительным схемам классической двухзтапной задачи стохастического программирования. В гл. 9—11 описаны динамические модели управления в условиях неполной информациимногоэтапные задачи стохастического программирования с условными и безусловными статистическими и вероятностными ограничениями с априорными и апостериорными решающими правилами.  [c.6]

Первой попыткой перехода от статических моделей стохастического программирования к динамическим была, по-видимому, двухэтапная задача Данцига — Маданского. Двухэтапная задача может быть обобщена в различных направлениях. Естественно, например, перейти к многоэтапной задаче с жесткими ограничениями (с ограничениями, которые должны выполняться при всех возможных реализациях случая, подобно тому, как это предполагается в классической двухэтапной задаче). Такого рода подходы рассматривались Беллманом [10], Дж. Данцигом [88], Н. 3. Шором и др. [332, 334—336]. Здесь мы, однако, рассмотрим более широкие обобщения двухэтапной задачи — различные постановки многоэтапных стохастических задач с безусловными и условными статистическими, вероятностными и жесткими ограничениями. Частные модели подобного типа обсуждались в [70, 308—310] и других работах. Многоэтапные модели стохастического программирования имеют многочисленные приложения к задачам планирования в экономике и технике. Ряд практических проблем, возникающих при перспективном планировании, при многостадийном проектировании, при управлении боевыми операциями, при планировании экспериментов и оперативном управлении космическими объектами, при регулировании технологических процессов, подверженных случайным возмущениям, может быть рассмотрен как многоэтапные стохастические задачи со статистическими вероятностными и жесткими ограничениями.  [c.192]

В предыдущих параграфах главы мы рассматривали многоэтапные стохастические задачи с условными и безусловными, статистическими и вероятностными ограничениями. Более непосредственным и естественным обобщением классической двухэтапной модели стохастического программирования являются многоэтапные задачи, в которых исключаются невязки условий при всех реализациях случая. На каждом этапе после получения информации о реализованных случайных параметрах условий задачи и о принятом на предыдущем этапе решении вводится коррекция, гарантирующая удовлетворение ограничений при всевозможных состояниях природы oeQ. По аналогии с соответствующими одноэтапными моделями такие задачи естественно называть многоэтапными задачами стохастического программирования в жесткой постановке. В этих задачах ограничены не средние значения некоторых функционалов (как в моделях предыдущих параграфов), а значения случайных функционалов при всех реализациях oeQ.  [c.202]

Математические методы управления в условиях неполной информации (1974) -- [ c.197 ]