Нейронные сети в торговле

Использование нейронных сетей в торговле  [c.211]

НЕЙРОННЫЕ СЕТИ В ТОРГОВЛЕ  [c.255]


Исследования показывают, что никакая устойчивая система торговли не дает постоянной прибыли. Участники рынка не ограничиваются линейными состоятельными правилами принятия решений, а имеют несколько сценариев действий, и то, какой из них пускается в ход, часто зависит от внешне незаметных факторов. Один из возможных подходов к многомерным нелинейным информационным рядам заключается в том, что бы подражать образцам поведения участников рынка. Нейронные сети идеально приспособлены для обнаружения нелинейных зависимостей в отсутствии априорных знаний об основной модели. Применение нейросетей согласуется с тезисом Саймона об ограниченной разумности , согласно которому на эффективности рынка сказывается ограниченность возможностей человеческих возможностей в работе с информацией.  [c.137]


На Четвертом Уровне мы исследуем психологическую сторону торговли. Мы будем рассматривать наши собственные уникальные аппаратные средства для записи и обработки информации, нейронные сети и взаимосвязи в нашем головном мозге, а также наш собственный и персональный выбор той программы, которой мы желаем воспользоваться в нашем собственном мозгу.  [c.153]

Технологии, о которых идет речь, основываются на нелинейных методах анализа экономической и финансовой информации. В условиях возрастающей неуправляемости мировых процессов в финансовой сфере традиционные (читай, линейные) методы все чаще оказываются неспособными распознать ключевые переломы в тенденциях рынка. Так было, например, в случаях с крахом фондового рынка в 1987 году или началом глубокого спада в экономике Великобритании. Разочарование в этих методах заставило вспомнить о некогда казавшейся невероятной идее, согласно которой изменение рыночных показателей во времени не есть чисто случайное блуждание, а размеры ожидаемых доходов и/или характеристики неустойчивости (волатильности) можно пытаться находить при помощи более мощных методов. Общей чертой новых методов является возможность распознавания образов и вывода обобщающих правил. Существенными составными частями нового подхода являются нейронные сети (сети компьютерных процессоров, взаимодействие которых построено по образцу процессов обучения, происходящих в человеческом мозге) и генетические алгоритмы (методы, в которых, исходя из большого набора первоначальных предположений, вырабатывают все более правильные представления о поведении рынка и, в конечном счете, более содержательные рабочие гипотезы). Про методы обоих видов говорят, что они управляются данными, в противоположность подходу, основанному на применении правил, который принят в экспертных системах. Системы, основанные на знаниях, обладают тем недостатком, что построенные на их основе методы торговли оказываются довольно негибкими. Наконец, совершенно новый взгляд на мир предлагает теория динамических систем или теория хаоса. С ее помощью в явлениях, ранее считавшихся случайными, удается обнаружить порядок или некоторую структуру. Основное предположение здесь состоит в том, что поведение системы есть результат множества нелинейных взаимодействий, вследствие чего даже небольшое изменение начальных данных может привести к совершенно другому дальнейшему поведению системы. Благодаря  [c.13]


С учетом всего сказанного нейронные сети уже не выглядят как черные ящики, как это обычно пытаются представить. Мы рассказали о двух перспективных эвристических подходах к оценке динамики функциональных связей между доходами на рынке акций и переменными, описывающими состояние рынка. Один из возможных способов определения этих зависимостей состоит в том, чтобы кластеризовать их с помощью однородного или нелинейного анализа главных компонент. На полученные в результате этого кластеры можно смотреть как на возможные сценарии макроэкономического поведения. Таким образом будет подготовлена почва для применения простых правил торговли, включающих зависимость от времени.  [c.155]

С точки зрения формализма нейронных сетей это правило можно рассматривать как сеть с заданными весами, которая принимает во входной слой последние L значений цены, имеет два линейных элемента в скрытом слое, которые вычисляют скользящие средние, и один пороговый выходной элемент, выдающий указание на торговлю.  [c.215]

Этот результат, по-видимому, свидетельствует о присутствии свойств неэффективности рынка (которые определяются как малые отклонения от 0.5-гиперплоскости) и о том, что нейронная сеть является адекватным инструментом для их обнаружения. Однако необходимы дальнейшие исследования, прежде чем данный метод можно будет использовать непосредственно в торговом зале. При том, что результаты оказались многообещающими, прибыльной стратегии торговли не выработано. Мы хотим высказать ряд предложений, реализация которых, по нашему мнению, могла бы способствовать выработке более совершенной стратегии торговли.  [c.227]

Например, требуется получить прогноз объемов продаж на следующий месяц. Имеется сеть магазинов розничной торговли. Первым шагом будет сбор истории продаж в каждом магазине и объединение ее в общую выборку данных. Следующим шагом будет предобработка собранных данных их группировка по месяцам, сглаживание кривой продаж, устранение факторов, слабо влияющих на объемы продаж. Далее следует построить модель зависимости объемов продаж от выбранных факторов. Это можно сделать с помощью линейной регрессии или нейронных сетей. Имея такую модель, можно получить прогноз, подав на вход модели историю продаж. Зная прогнозное значение, его можно использовать, например, в приложениях оптимизации для лучшего размещения товара на складе.  [c.11]

Чем будет вызвана неудача В большинстве случаев система будет работать великолепно при тестировании, но плохо при реальной торговле. Специалисты по разработке нейронных сетей называют это слабой генерализацией трейдеры знакомы с этим явлением по частым опустошениям денежного счета у брокера. Одно из последствий такого неудачного исхода — распространенное заблуждение о вреде оптимизации вообще.  [c.60]

Нейронные сети были наиболее популярны в конце 80 — начале 90-х годов, после чего медовый месяц завершился. Что же произошло В общем, наступило разочарование среди трейдеров, надеявшихся, что новые технологии чудесным образом обеспечат им превосходство с минимальными затратами усилий. Разработчики использовали для обучения недостаточно подготовленные исходные данные, надеясь на открытия, которые должна была сделать сама сеть. Это был наивный подход. Успех на рынке никогда не бывает таким простым и доступным для всех. Этот подход был не только неэффективен в отношении разработки сетей, но и привел к тому, что сети широко распространились. В результате любая попытка систем уловить выгодные движения рынка сводилась к нулю ввиду изменившейся природы рынка, который быстро адаптировался к новым методам торговли. Во всем обвинили саму технологию и отбросили ее, не задумавшись о неправильном подходе к ее применению. Для получения успешных результатов был необходим более осмысленный и изощренный подход.  [c.255]

При выполнении некоторых условий нейронные сети могут использоваться в системной торговле. Критическим моментом для избежания вредной подгонки под исторические данные (в противоположность полезной оптимизации) является достижение адекватного соотношения размера выборки данных и количества свободных параметров сети.  [c.281]

В части II в центре внимания был выбор времени входа в рынок. Была исследована степень эффективности различных методологий при ответе на следующий всеобъемлющий вопрос когда, где и как входить в рынок. Были проведены исследования самых разнообразных торговых подходов от рыночных циклов до активности солнечных пятен, от простейших торговых правил до продвинутых генетических алгоритмов и нейронных сетей. Для того чтобы сделать достаточно справедливое сравнение методов входа, во всех тестах преднамеренно использовалась простая стандартная стратегия выхода из рынка. В сделках использовалась фиксированная защитная остановка, выход по лимитному приказу при достижении целевой прибыли, а также выход по рыночному приказу по истечении определенного количества дней. В части III в центре внимания будет находиться проблема выхода из рынка. Мы постараемся восполнить недостаток интереса к стратегиям выхода в литературе, посвященной биржевой торговле.  [c.307]

Нейронные сети хорошо себя зарекомендовали как прогностический инструмент для получения сигналов входа. В пределах выборки прибыль была невероятной, вне пределов выборки — гораздо выше прибыли случайных входов (хотя торговля портфелем в целом была убыточной). Таким образом, была продемонстрирована реальная прогностическая ценность. Использование подобных прогнозов для того, чтобы закрывать позиции до разворота рынка, должно повысить эффективность торговли, даже если это коснется весьма небольшого количества сделок. То же самое относится и к правилам, полученным генетическими методами. При этом не следует ожидать чудесного роста эффективности, поскольку в любом случае система будет генерировать немного дополнительных сигналов выхода, которые будут влиять на считанные сделки, возможно, в положительную сторону. Таким образом, общее улучшение будет невелико. Поскольку для нижеприведенных тестов правила разрабатываются заново, то, возможно, будет обнаружено больше случаев эффективного применения сигналов выхода, чем было обнаружено для сигналов входа.  [c.362]

Интересно, что вне пределов выборки сохранили эффективность генетическая модель и малые нейронные сети. Такие модели чрезвычайно способны к подгонке под исторические данные и часто проваливаются в тестах вне выборки и при реальной торговле. Кроме того, некоторый торговый потенциал был проявлен редко исследуемыми сезонными моделями. При этом наиболее популярные методики (скользящие средние, осцилляторы, циклы) были среди худших как в пределах, так и вне выборки. Примечательно, что модели на основе пробоев в среднем хорошо работали в прошлом, но теперь их эффективность снизилась до уровня модели случайных входов.  [c.379]

Виллем-Макс ван ден Берг. Ассоциированный профессор по финансовому делу и инвестициям в Университете Эразма, Роттердам совместно с банком ABN-AMRO разработал программный пакет для управляющих финансовыми активами, в котором используются теория игр и моделирование. Занимался исследованием возможностей нейронных сетей как инструмента для принятия решений в области финансов. В настоящее время является ответственным исполнителем проекта "АСЕ" ( Рабочая среда аналитика ) в рамках европейского проекта ESPRIT, где разрабатывает модели торговли в реальном времени, основывающиеся на информации, передаваемой по каналам новостей Рейтер.  [c.8]

В гл. 5 на примере Европейской биржи опционов (ЕОЕ, Амстердам) исследуется вопрос о том, дают ли нейронные сети существенные возможности для получения прибыли в течение одного торгового дня. Гл. 6 посвящена результатам определения макроэкономических показателей (так называемых глобальных (pervasive) факторов), влияющих на доходы от общего индекса акций на Нью-Йоркской и Амстердамской фондовых биржах. В гл. 7 показано, что нейронные сети являются вполне жизнеспособным инструментом отбора в международном распределении активов, поскольку они позволяют выбрать среди всех портфелей тот, который имеет наивысший доход и наименьший риск. Гл. 8 посвящена оценке кредитного риска посредством данных нефинансового характера. До сих пор очень мало было сделано для того, чтобы в моделях предсказания банкротств учитывать качественные показатели. В то же время, нейронные сети могут работать как с числовыми, так и с нечисловыми данными. В гл. 9, напротив, чисто экономические числовые показатели используются для оценки возможности банкротства корпорации на примере английских производителей комплектующих для автомобилей. В последней, десятой, главе построена нейронная сеть для обнаружения критических точек при изменении показателей доходов по акциям. Результаты показывают, что простое техническое правило торговли, реализованное нейронно-сетевой системой с прямой свя-  [c.17]

Большинство попыток разработать прогностические модели на основе нейронных сетей, простые или усложненные, были сконцентрированы на отдельных рынках. Проблема с отдельными рынками состоит в том, что количество точек данных для обучения сети весьма ограничено и ведет к переоптимизации, что, особенно в сочетании с не слишком хорошо подготовленными данными, ведет к провалу при торговле. В этой главе нейронные сети будут обучаться на основе целого портфеля ценных бумаг, валют и фьючерсов, что позволит использовать для избежания подгонки десятки тысяч точек данных — приличное количество для маленькой или средней нейронной сети. Возможно, таким образом удастся заставить работать достаточно прямолинейный алгоритм прогнозирования рынка. Фактически, такая сеть сможет служить универсальным прогностическим средством, т.е. после обучения на целом портфеле она сможет прогнозировать в отдельности каждый из рынков.  [c.255]

Если mode выбирается равным 2, то нейронная сеть, обученная на вышеописанном файле с фактами, используется для генерации торговых входов. Первый блок кода открывает и загружает нужную сеть до начала расчетов по первому рынку. После выполнения стандартных функций обновления симулятора, расчета количества контрактов, избежания дней с остановленной торговлей и т.п. запускается блок, генерирующий сигналы входа и выхода. Функция PrepareNeurallnputs вызывается для получения входных данных, соответствующих текущему дню. Сеть обрабатывает эти данные, и на основании ее выхода генерируются сигналы на вход в рынок.  [c.262]

В пределах выборки было получено улучшение общих результатов за счет применения дополнительного нейронного выхода. Средняя прибыль в сделке достаточно медленно изменялась при изменениях значения порога. Наилучшее значение порога составило 54, средняя сделка при этом приносила убыток в 832. Процент прибыльных сделок составил 41%, годовое соотношение риска/прибыли —0,87. Таким образом, внедрение нейронного выхода значительно повысило эффективность торговли по сравнению с результатами, приведенными в табл. 15-1. Вне пределов выборки, впрочем, улучшения не наблюдалось эффективность не особо отличалась от работы базовой МССВ. Когда исследовалась работа нейронных сетей для генерации входов, эффективность при переходе на данные вне пределов выборки падала весьма резко — видимо, нечто подобное произошло и в этом тесте, где в качестве элемента стратегии выходов использовалась та же нейронная сеть.  [c.366]

Торговая система (Trading system). Торговая система представляет собой автоматизированный метод работы на рынке ценных бумаг и финансовом рынке. Эта система может быть создана на основе простых правил если — то , встроенных в механическую систему торговли, или на основе нейронных сетей, генетических алгоритмов, нечеткой логики, или комбинации этих методов. Система трейдинга может использоваться в качестве системы выбора решений или системы поддержки выбора решений.  [c.314]

Смотреть страницы где упоминается термин Нейронные сети в торговле

: [c.214]    [c.49]    [c.365]