При —1 имеет место отрицательная корреляция. Проекты реагируют на экономические воздействия в противоположных направлениях. [c.424]
Если фирмы имеют проекты с отрицательной корреляцией, происходит диверсификация. [c.424]
Заметим, что риск полностью устраняется при линейной отрицательной корреляции проектов. [c.425]
Положительная связь увеличивает риск. Если бы в рассматриваемом примере имела место отрицательная корреляция между доходами, то коэффициент вариации составил бы 9,07% и риск был бы существенно ниже. [c.122]
При таком количестве источников такая теснота отрицательной корреляции невозможна. [c.123]
Зарубежной статистикой доказано, что в долговременных расчетах формула Пааше занижает, а индекс Ласпейреса завышает изменение цен. Вследствие наличия отрицательной корреляции между индивидуальными индексами цен и количествами относительный вес товаров падает, если цена возрастает. Чем дальше отдаляется базисный год, тем больше, как правило, становится вариация индивидуальных цен и количеств, а также разность между индексами Ласпейреса и Пааше. Достижение неравенства /л > /п, называемого эффектом Ласпейреса, может в силу ряда причин превратиться в свою противоположность (7Л < /п) (отсутствие возможности замены товаров, ошибка выборки и др.). [c.562]
Для выбора вариантов диверсификации следует по годам реализации проектов определить индивидуальную экономическую рентабельность производства продуктов А, Б и В, среднюю рентабельность по каждому виду продукции, отклонения текущих значений рентабельности от средней и определить корреляцию между выпуском продуктов А и Б, А и В. Знак корреляции покажет наиболее предпочтительный вариант диверсификации. Диверсификация с отрицательной корреляцией, в основном, несколько уменьшает совокупную отдачу от проектов, но в то же время сокращает риск резкого уменьшения доходов. [c.264]
При отрицательной корреляции всегда существует стратегия формирования портфеля (представленная особым набором акций в нем), позволяющая полностью исключить риск". Очень жаль, что в реальности такой совершенно отрицательной корреляции между обыкновенными акциями не бывает. [c.152]
Статистическим анализом доказано, что в долговременном аспекте формула Пааше занижает реальное изменение цен вследствие отрицательной корреляции проданного количества товара и цены, а в случае долгосрочных и международных сопоставлений разница между индексами, взвешенными разными способами, составляет несколько процентов. Значения индексов, вычисленных по формулам Ласпейреса и Пааше, совпадают лишь в случае почти невозможного ка практике совпадения структуры товарной массы базисного и отчетного периодов. [c.310]
Коэффициент корреляции может изменяться в диапазоне 1,0. Коэффициент +1,0 (полная положительная корреляция) означает, что изменения независимой переменной приведут к идентичным изменениям зависимой (т.е. изменение индикатора вызовет такое же изменение цены бумаги). Коэффициент 1,0 (полная отрицательная корреляция) означает, что изменения независимой переменной вызовут идентичные изменения зависимой, но в противоположном направлении. Коэффициент, равный нулю, свидетельствует об отсутствии связи между переменными, то есть изменения независимой переменной не влияют на изменения зависимой. [c.104]
В случае сравнения индикатора и цены бумаги высокий положительный коэффициент корреляции (скажем, больше 0,70) означает, что за изменением индикатора должно последовать соответствующее изменение цены. Высокая отрицательная корреляция (напр., меньше 0,70) говорит о том, что изменение индикатора обычно вызывает изменение цены в противоположном направлении. Низкий (т.е. близкий к нулю) коэффициент корреляции означает слабую взаимосвязь цены и индикатора. [c.104]
СИЛЬНАЯ ОТРИЦАТЕЛЬНАЯ КОРРЕЛЯЦИЯ [c.105]
Высокая положительная корреляция свидетельствует о том, что за выигрышем чаще следует очередной выигрыш и реже следует проигрыш и наоборот. При высокой отрицательной корреляции за выигрышем чаще следует проигрыш и реже - очередной выигрыш и наоборот. [c.214]
За выигрышем чаще следует проигрыш, за проигрышем -выигрыш. В этом случае мы имеем отрицательную корреляцию между результатами сделок [c.217]
Рассмотрим результаты последовательных сделок торговой системы. Назовем серией несколько следующих подряд прибыльных сделок или несколько следующих подряд убыточных сделок. В случае положительной корреляции количество серий на периоде тестирования будет меньше, чем количество серий при независимом чередовании прибылей и убытков. При отрицательной корреляции ситуация будет обратной. Заметим, что при расчете серий учитывается только знак дохода по сделке, а не его абсолютная величина, при этом сделки с нулевым доходом учитываются как убыточные. [c.217]
Рисунок 1-3 Отрицательная корреляция (г = -1,00) |
Средние значения различаются, потому что вы усредняете только те X и Y, которые частично перекрывают друг друга, поэтому последнее значение Y (3) не вносит вклад в среднее Y, а первое значение X (1) не вносит вклад в среднее X. Числитель является суммой всех значений из столбца Е (0,8). Чтобы найти знаменатель, мы извлечем квадратный корень из итогового значения столбца F, то есть 8,555699, затем извлечем квадратный корень из итогового значения столбца G, то есть 8,258329, и перемножим их, что даст в результате 70,65578. Теперь разделим числитель 0,8 на знаменатель 70,65578 и получим 0,011322. Это наш коэффициент линейной корреляции г. В данном случае коэффициент линейной корреляции 0,011322 едва ли о чем-то говорит, но для многих торговых систем он может достигать больших значений. Высокая положительная корреляция (по крайней мере, 0,25) говорит о том, что большие выигрыши редко сменяются большими проигрышами, и наоборот. Отрицательные значения коэффициента корреляции (между -0,25 и -0,30) подразумевают, что после больших проигрышей следуют большие выигрыши, и наоборот. Для заданного количества сделок с помощью метода, известного как Трансформация Z Фишера , коэффициент корреляции можно преобразовать в доверительный уровень. Эта тема рассматривается в приложении С. Отрицательную корреляцию так же, как и положительную, можно использовать в своих интересах. Например, если обнаружена отрицательная корреляция и система показала большой проигрыш, то в следующей сделке можно ожидать большой выигрыш и таким образом открыть больше контрактов, чем обычно. Если и эта сделка принесет убыток, то он не должен быть очень большим (из-за отрицательной корреляции). [c.22]
До настоящего момента мы ограничивали сумму процентных весов 100 процентами. Однако возможно, что сумма процентных размещений для портфеля, который будет иметь наивысший геометрический рост, превысит 100%. Рассмотрим, например, две рыночные системы, А и В, которые идентичны во всех отношениях, за тем исключением, что у них отрицательная корреляция (R < 0). Допустим, что оптимальное f в долларах для каждой из этих рыночных систем составляет 5000 долларов. Допустим, что оптимальный портфель на основе самого высокого среднего геометрического — это портфель, который размещает 50% в каждую из двух рыночных систем. Это означает, что вам следует торговать 1 контрактом на каждые 10 000 долларов баланса для рыночной системы А, и для системы В. Однако когда есть отрицательная корреляция, можно показать, что оптимальный рост счета в действительности будет достигнут при торговле 1 контрактом для баланса, меньшего 10 000 долларов для рыночной системы А и/или рыночной системы В. Другими словами, когда есть отрицательная корреляция, сумма процентных весов может превышать 100%. Более того, возможно, что процентные размещения в рыночные системы могут по отдельности превысить 100%. [c.47]
Важно помнить, что исторически ваш проигрыш может быть такой же большой, как и процент f (в смысле возможного уменьшения баланса). В действительности вам следует ожидать, что в будущем он будет выше, чем данное значение. Это означает, что комбинация двух рыночных систем, даже если они имеют отрицательную корреляцию, может привести к уменьшению баланса на 44%. Это больше, чем в системе с положительным математическим ожиданием, в которой оптимальное f= 0,25, и поэтому максимальный исторический проигрыш уменьшит баланс только на 25%. Мораль такова диверсификация, если она произведена правильно, является методом, который повышает прибыли. Она не обязательно уменьшает проигрыши худшего случая, что абсолютно противоречит популярному представлению. Диверсификация смягчает многие мелкие проигрыши, но она не уменьшает проигрыши худшего случая. При оптимальном f максимальные проигрыши могут быть существенно больше, чем думают многие. Поэтому, даже если вы хорошо диверсифицировали портфель, следует быть готовым к значительным уменьшениям баланса. Однако давайте вернемся и посмотрим на результаты, когда коэффициент корреляции между двумя играми равен 0. В такой ситуации, какими бы ни были результаты одного броска, они не влияют на результаты другого броска. Таким образом, есть четыре возможных результата [c.49]
Очевидно, что при диверсификации вы должны использовать такие рыночные системы, которые имеют самую низкую корреляцию прибылей друг к другу, и желательно отрицательную корреляцию. Вы должны понимать, что уменьшение баланса худшего случая едва ли будет смягчено диверсификацией, хотя вы сможете смягчать многие более слабые уменьшения баланса. Наибольшая польза диверсификации состоит в улучшении среднего геометрического. Метод поиска оптимального портфеля путем рассмотрения чистых дневных HPR упраздняет необходимость смотреть за тем, сколько сделок в каждой рыночной системе произошло. Использование этого метода позволит вам наблюдать только за средним геометрическим независимо от частоты сделок. Таким образом, среднее геометрическое становится единственной статистической оценкой того, насколько прибыльным является портфель. Главная цель диверсификации — это получение наивысшего среднего геометрического. [c.50]
Отметьте, что в случае комбинированного счета и в случае отдельных счетов прибыль одна и та же 42,38. Мы рассматривали положительную корреляцию между двумя системами. Теперь рассмотрим случай с отрицательной корреляцией между теми же системами, для двух отдельных денежных счетов (Таблица III) [c.62]
Как мы уже знаем (см. главу 2), добавление рыночных систем увеличивает среднее геометрическое по портфелю в целом. Однако возникает проблема каждая следующая рыночная система вносит все меньший и меньший вклад в среднее геометрическое и все больше ухудшает его, понижая эффективность из-за одновременных, а не последовательных результатов. Поэтому не следует торговать слишком большим числом рыночных систем. Более того, реальное применение теоретически оптимальных портфелей осложняется из-за залоговых требований. Другими словами, вам лучше торговать 3 рыночными системами при полном оптимальном f, чем 300 рыночными системами при значительно пониженных уровнях, согласно уравнению (8.08). Скорее всего вы придете к выводу, что оптимальное число рыночных систем для торговли должно быть невелико. Особенно это обстоятельство важно, когда у вас много ордеров к исполнению и увеличивается вероятность ошибок. Если одна или несколько рыночных систем в портфеле имеют оптимальные веса больше единицы, может возникнуть еще одна проблема. Рассмотрим рыночную систему с оптимальным f=0,8 и наибольшим проигрышем, составляющим 4000 долларов. Для этой рыночной системы f = 5000 долларов. Давайте предположим, что оптимальный вес данного компонента в портфеле равен 1,25, поэтому вы будете торговать одной единицей компонента на каждые 4000 долларов ( 5000/1,25) баланса счета. Как только компонент столкнется с наибольшим проигрышем, весь активный баланс на счете будет обнулен, если прибылей в других рыночных системах не хватит для сохранения активного баланса. Рассмотренная проблема наиболее актуальна для систем, которые редко генерируют сделки. Если бы у нас были две рыночные системы с отрицательной корреляцией и положительным ожиданием, необходимо было бы открывать бесконечное количество контрактов на рынке. Когда один из компонентов проигрывает, другой выигрывает равную или большую сумму. Таким образом, мы получаем прибыль в каждой игре, однако только в том случае, когда рыночные системы ведут игру одновременно. Рассматриваемая же торговля аналогична гипотетической ситуации, когда один из компонентов в игре не активен, но используется другая рыночная система с бесконечным числом контрактов. Проигрыш может быть катастрофическим. Проблему можно решить следующим образом разделите единицу на наибольший вес компонента портфеля и используйте полученное значение в качестве верхней границы активного баланса, если оно меньше, чем значение, найденное из уравнения (8.08). В таком случае, если в будущем произойдет проигрыш той же величины, что и наибольший проигрыш (на основе которого рассчитано f), мы не потеряем все деньги. Например, наибольший вес компонента в нашем портфеле составляет 1,25. Если значение из уравнения (8.08) будет больше 1 / 1,25 = 0,8, следует использовать 0,8 в качестве верхней границы для доли активного баланса. Если первоначальная доля активного баланса небольшая, вышеописанная проблема может и не возникнуть, однако более агрессивному трейдеру следует всегда принимать ее во внимание. Альтернативное решение состоит в введении дополнительных ограничений в матрице портфеля (например, для каждой рыночной системы можно ограничить максимальные веса единицей и ввести дополнительные ограничения по залоговым средствам). Подобные дополнительные ограничения [c.241]
Таким образом, вам нужно найти п оптимальных значений f, по одному на каждый компонент. Заметьте также, что хотя значения / не могут быть меньше нуля, каждое из них может быть больше единицы. Причина этого в том, что если между двумя компонентами имеется достаточно высокая отрицательная корреляция, то соответствующие им значения/будут стремиться к бесконечности. [c.66]
Обратите внимание, что вы можете назначить оптимальное /для этих двух потоков, равным бесконечности (тогда/ будет бесконечно мало, и у вас будет бесконечное количество единиц), ибо суммарно нет ни одного убыточного периода владения. Заметьте также, что торговля этим портфелем много агрессивнее торговли первого потока с оптимальным/ равным 0,25. Наконец, отметьте, что хотя поток 2 имеет отрицательное математическое ожидание, благодаря отрицательной корреляции с потоком 1, торгуя ими одновременно, вам следовало бы задействовать бесконечное количество единиц актива То есть иногда подключение компонента с отрицательным математическим ожиданием повышает общую эффективность портфеля. [c.66]
Цены двух абсолютно положительно коррелированных групп акций будут одновременно двигаться вверх-вниз. Это значит, что диверсификация не сократит риск, если портфель состоит из абсолютно положительно коррелированных групп акций. В то же время риск может быть устранен полностью путем диверсификации при наличии абсолютной отрицательной корреляции. [c.77]
Диверсификация является одним из способов защиты капитала, однако в разнообразии тоже должна быть мера. Допустим, трейдер одновременно открыл позиции на слишком большом количестве разных рынков. Может получиться так, что прибыль от одной или двух удачных сделок не сможет компенсировать убытков по остальным позициям. Всегда необходимо находить разумный компромисс между диверсификацией и концентрацией. Иногда трейдеры концентрируют средства всего на нескольких рынках и получают неплохую прибыль. Это вполне допустимо, во всяком случае, если эти рынки проявляют ярко выраженную направленность. Единого ответа на вопрос, в какой степени следует диверсифицировать капитал, не существует. Мой личный опыт подсказывает, что более или менее надежного распределения средств можно достичь, открывая позиции одновременно на четырех-шести рынках разных групп - не больше. Повторяю, рынках разных групп. Чем больше значение отрицательной корреляции, существующей между рынками, тем выше диверсификация вложенных в них средств. Так, длинные позиции на четырех рынках иностранных валют, открытые одновременно, - не самый удачный пример того, какой должна быть эффективная диверсификация. [c.430]
Для измерения взаимосвязи между какими-либо видами деятельности предприятия используется показатель корреляции, показывающий связь между признаками, состоящую в изменении средней величины одного из них в зависимости от изменения значения другого. Если изменение одного признака в связи с изменением другого происходит в одном направлении, то корреляция считается положительной. Если же эти изменения разнонаправлены, то между данными признаками существует отрицательная корреляция. [c.264]
В качестве иллюстрации рассмотрим компанию Multi rop, имеющую два подразделения, активы каждого из которых оцениваются в 1 млрд. долл. Предположим, что показатели доходности каждого из этих подразделений характеризуется достаточно высоким уровнем риска, но они связаны между собой отрицательной корреляцией. В связи с этим объединение этих двух подразделений в рамках одной компании приводит к тому, что доходность ценных бумаг Multi rop оказывается безрисковой. Безрисковая процентная ставка составляет 5% годовых, и эта же величина оказывается ожидаемой равновесной ставкой доходности для каждого из двух подразделений. Предположим, что Multi rop имеет долгосрочные долговые обязательства на сумму в 1 млрд. долл., по которым также начисляется процент в 5% годовых. [c.311]
Предположим, что вместо абсолютной отрицательной корреляции показатели доходности двух подразделений фирмы Multi rop никак не коррелируют. Будет ли в j этом случае выделение дочерней фирмы Uni rop в виде отдельной фирмы приводить к повышению благосостояния акционеров [c.312]
В примере показан расчет значения риска для портфеля инноваций. В данном случае рассмотрены сопутствующие товары, имеющие высокую корреляцию, поэтому величина риска для портфеля в целом получилась достаточно большой. Вывод на рынок товаров со значениями отрицательных корреляцияй привел бы к снижению совокупного риска. [c.105]
Основные концепции современной теории портфеля изложены в монографии, написанной доктором Гарри Марковицем. Первоначально Маркович предположил, что управление портфелем является проблемой структурного, а не индивидуального выбора акций, что обычно практикуется. Марковиц доказывал, что диверсификация эффективна только тогда, когда корреляция между включенными в портфель рынками имеет отрицательное значение. Если у нас есть портфель, составленный из одного вида акций, то наилучшая диверсификация достигается в том случае, если мы выберем другой вид акций, которые имеют минимально возможную корреляцию с ценой первой акции. В результате этого, портфель в целом (если он состоит из этих двух видов акций с отрицательной корреляцией) будет иметь меньшую дисперсию, чем любой вид акций, взятый отдельно. Марковиц предположил, что инвесторы действуют рациональным способои и при наличии выбора предпочитают портфель с меньшим риском при равном уровне прибыльности или выбирают портфель с большей прибылью, при одинаковом риске. Далее Марковиц утверждает, что для данного уровня риска есть оптимальный портфель с наивысшей доходностью, и таким же образом для данного уровня доходности есть оптимальный портфель с наименьшим риском. Портфель, доходность которого может быть увеличена без сопутствующего увеличения риска или портфель, риск которого можно уменьшить без сопутствующего уменьшения доходности, согласно Марковичу, неэффективны. Рисунок 1-7 показывает все имеющиеся портфели, рассматриваемые в данном примере. Если у вас портфель С, то лучше заменить его на портфель А, где прибыль такая же, но с меньшим риском, или на портфель В, где вы получите большую прибыль при том же риске. Описывая эту ситуацию, Марковиц ввел понятие эффективная граница (effi ient frontier). Это набор портфелей, которые находятся в верхней левой части графика, то есть портфели, прибыль которых больше не может быть увеличена без увеличения риска, и риск которых не может быть уменьшен без уменьшения прибыли. Портфели, находящиеся на эффективной границе, называются эффективными портфелями (см. Рисунок 1-8). Портфели, которые находятся вверху справа и внизу слева, в целом недостаточно диверсифицированы по сравнению с другими портфелями. Те же портфели, которые находятся в середине эффективной границы, обычно очень хорошо диверсифицированы. Выбор портфеля инвестором зависит от степени неприятия риска инвестором — иначе говоря, от желания взять на себя риск. В модели Марковица любой портфель, который находится на эффективной границе, является хорошим выбором, но какой именно портфель выберет инвестор — это вопрос личного предпочтения (позднее мы увидим, что есть точное оптимальное расположение портфеля на эффективной границе для всех инвесторов). Модель Марковица первоначально была представлена для портфеля акций, который инвестор будет держать достаточно долго. Поэтому основными входными данными были ожидаемые доходы по акциям (определяется как ожидаемый прирост цены акции плюс дивиденды), ожидаемые дисперсии этих доходов и корреляции доходов между различными акциями. Если бы мы [c.41]
GS I имеет сильную положительную корреляцию с инфляцией и сильную отрицательную корреляцию с доходностью акций и облигаций. Эти важный критерий для создания диверсифицированного портфеля. Академические исследования показали добавляя индекс к физическим биржевым товарам, портфельные менеджеры могут увеличивать доходность портфеля, содержащего традиционные американские акции и облигации, бе з увеличения его изменчивости. [c.202]