Модель Кобба—Дугласа

Модель Кобба—Дугласа  [c.56]

Иллюстрацией к переплетению и альтернативности экономических ресурсов может быть простая, основанная только на двух производственных факторах модель Кобба—Дугласа (названа по имени двух американских экономистов). Она выглядит следующим образом  [c.56]


Принято различать позитивную экономическую науку, имеющую дело с фактами и явлениями, и нормативную, вырабатывающую предписания и рецепты. Неоклассическая школа считает, что экономические разработки, как правило, должны иметь выход на практику, давать рекомендации для обоснования экономической политики. Взаимосвязь позитивных аспектов теории с нормативными выводами характерна для многих разработок и концепций. К примеру, одна из первых моделей экономического роста, модель Харрода—-Домара, имеет целью выявить условия постоянного и относительно равномерного роста в долгосрочном периоде. Двухфакторная модель Кобба—Дугласа, учитывающая заменяемость факторов, нужна для оценки источников роста, влияния технологии, технического прогресса на экономический рост.  [c.129]

Факторная модель Кобба—Дугласа (см. 2.2) показывает взаимодействие и взаимозаменяемость труда и капитала, насколько продукт обязан своим созданием тому или иному фактору, при какой их комбинации может быть достигнут максимум продукции при наименьших затратах.  [c.404]


В последующих многочисленных исследованиях экономистов (Э. Денисона, Р. Солоу) модель Кобба—Дугласа была модифицирована и развита путем ввода других факторов роста возраста основного капитала, масштаба производства, квалификации работников, продолжительности рабочей недели и т.д.  [c.405]

Рассмотренные выше неоклассические модели Кобба-Дугласа и Солоу легли в основу большого числа современных моделей экономического роста, появившихся в последней трети XX века.  [c.636]

Существует множество вариантов моделей экономического роста, построенных на базе производственной функции. Все они различаются между собой числом факторов экономического роста, учитываемых при построении модели (степенью их дезагрегирования), и методами учета факторов. Так, например, если в модели Кобба-Дугласа научно-технический прогресс рассматривается как эндогенный фактор, "растворенный" в других факторах производства, то в модели лауреата Нобелевской премии Яна Тинбергена НТП рассматривается как эндогенный, заданный извне фактор.  [c.318]

Охарактеризуйте подробно роль факторов предложения в экономическом росте. Проанализируйте модель Кобба-Дугласа.  [c.321]

Поскольку для большого числа объединений не была установлена линейная зависимость между фактическим удельным расходом и приведенными выше факторами, то наряду с линейной моделью для всех объединений была опробована многофакторная степенная модель, которая описывается так называемой функцией Кобба— Дугласа ( 2 )  [c.52]

Корреляционная модель себестоимости добычи нефти и попутного газа по указанным факторам была рассчитана по мультипликативной функции Кобба — Дугласа (41). В результате решения этой модели было составлено сводное уравнение по нефтедобывающей промышленности Украинской ССР  [c.90]


Если в модели (5.16) а+р=1 (т. е. модель такова, что при расширении масштаба производства — увеличении затрат капитала К и труда L в некоторое число раз — объем производства возрастает в то же число раз) функцию Кобба— Дугласа представляют в виде  [c.127]

Значительный вклад в развитие теории экономического роста внес Р. Солоу. Им были разработаны две модели модель факторного анализа источников экономического роста и модель, раскрывающая взаимосвязь сбережений, накопления капитала и экономического роста Основой первой модели явилась производственная функция Кобба—Дугласа. Она была модифицирована путем ввода еще одного фактора — уровня развития технологий  [c.405]

Модель, определяющая зависимость объема проходки скважин (У3) от количества буровых станков в работе ( Xj ) и численности работающих в бурении ( %г> ), представленная производственной функцией вша Кобба-Дугласа-Тинбергена  [c.11]

Выбор производственной функции Кобба — Дугласа или функции с постоянной эластичностью замещения факторов (С 5-функции) в качестве модели для анализа и прогноза народнохозяйственной динамики представляет собой первый из охарактеризованных путей. Однако постулируемые для этих производственных функций свойства, такие, как постоянство эластичностей факторов или эластичности их замещения, могут, не реализуясь в фактическом процессе взаимодействия факторов, приводить к чрезмерно усредненному или неадекватному описанию экономического  [c.31]

В современном макроэкономическом анализе наибольшее применение получила функция Кобба-Дугласа и ее последующие модификации. В 1928 г. американские исследователи — математик Ч. Кобб и экономист П. Дуглас — создали макроэкономическую модель, позволяющую рассчитать вклад различных факторов производства в увеличение объема производства или национального дохода. Эта функция получила следующий вид  [c.204]

Рассмотрение неоклассических теорий роста было бы неполным без анализа модели Р. Солоу, опубликованной в 1956 г. В 1987 г. ее автору была присуждена Нобелевская премия. В основе модели Солоу лежит допущение о полной взаимозаменяемости факторов производства. Автор использует производственную функцию Кобба- Дугласа, в которой труд и капитал являются субститутами и сумма коэффициентов эластичности выпуска по факторам а + р равна 1.  [c.205]

При сравнении подхода на основе линейного программирования с эмпирическим исследованием традиционных производственных функций следует иметь в виду следующее. Во-первых, модель линейного программирования обычно интерпретируется как модель производства в коротком периоде с фиксированным предложением ряда ресурсов. С другой стороны, эмпирическое исследование производственных функций Кобба—Дугласа обычно связано с долгосрочными соотношениями, в которых все ресурсы переменные. Во-вторых, решение задачи с помощью модели программирования указывает, что фирмы должны делать, чтобы максимизировать свой чистый доход в некотором смысле это улучшает существующую производственную функцию фирмы, придавая ей более высокий уровень эффективности. Подход на основе линейного программирования не просто описывает производственные отношения, обычно он меняет их  [c.177]

Во-первых, неоклассики утверждали, что прирост общественного продукта зависит от изменения всех факторов производства — труда, капитала и природных ресурсов, а не только от динамики инвестиций, как вытекало из моделей Харрода. Ключевую роль в процессе роста играет также научно-технический прогресс. Критика модели Харрода стимулировала создание альтернативных неоклассических моделей экономической динамики (Дж. Мид, Р. Солоу), которые базировались на модернизированном варианте функции Кобба—Дугласа и отличались многофакторным характером (в отличие от однофакторной инвестиционной модели Харрода).  [c.21]

Неоклассические модели экономического роста строятся на базе производственной функции и основаны на предпосылках полной занятости, гибкости цен на всех рынках, а также полной взаимозаменяемости факторов производства. Попытки исследовать, в какой степени качество факторов производства и различные пропорции в их сочетании воздействуют на экономический рост, привели к созданию модели производственной функции Кобба-Дугласа. Рассмотрим эту модель подробнее.  [c.617]

Функция Кобба-Дугласа получена в результате математического преобразования простейшей производственной функции Y = F(L, К) в модель, которая показывает, какой долей совокупного продукта вознаграждается участвующий в его создании фактор производства. Она имеет следующий вид  [c.617]

Макроэкономическое равенство / = S является условием равновесного роста еще одной неоклассической модели, которая строится на основе производственной функции Кобба-Дугласа. Речь пойдет о модели экономического роста, автор которой - известный американский экономист, лауреат Нобелевской премии Роберт Солоу. Данная модель объясняет механизм роста экономики в устойчивом состоянии и показывает, как осуществляется экономический рост в условиях технического прогресса.  [c.619]

В реальной экономической жизни общества это равновесие нарушается. Однако моделирование равновесия позволяет найти отклонение реальных процессов от идеала. Наиболее известны факторная модель Кобба—Дугласа и простая односекторная модель экономической динамики Р. Солоу.  [c.404]

В 1928 году американские ученые — математик Ч. Кобб и экономист П. Дуглас проанализировали статистические данные по обрабатывающей промышленности США и обнаружили связь между количеством отработанных человеко-часов (L) и величиной основного капитала (К), с одной стороны, и величиной национального дохода (У) — с другой. На основании исследований они вывели зависимость, которая вошла в историю под названием функции Кобба —Дугласа (двухфак-торная модель). В данной модели учитывалось два фактора капитал и труд. Она может быть представлена в следующем виде  [c.97]

При построении моделей себестоимости добычи нефти и газа по НГДУ Прикарпатья (линейная, полином третьей степени мультипликативная функция Кобба — Дугласа) ни одна из них не выдержала проверки на адекватность (табл. 29). Величины критериев, характеризующих экономико-статистическую достоверность кинетической производственной функции по нефтегазодобывающим управлениям Прикарпатья, приведены в табл. 30.  [c.94]

Построенные многофакторные корреляционные модели по нефте-х добывающей промышленности Украины, нефтегазодобывающим управлениям Прикарпатья, НГДУ Долинанефтегаз вида множественной линейной функции, мультипликативной функции Кобба — Дугласа, кинетической производственной функции позволили сделать количественную оценку влияния различных факторов в их взаимосвязи на динамику себестоимости добычи нефти и попутного газа. Исследована специфика экономико-математического моделирования в нефтедобывающей промышленности, и с этих позиций обосновано использование в качестве функции себестоимости добычи нефти и газа кинетической трансцендентной функции вида  [c.111]

Кобба-Дугласа Q= аЬр1Кр2. Оцените значимость модели. Рассчитайте объем  [c.22]

Функция Кобба — Дугласа послужила толчком для разработки различных моделей экономической динамики, основанных на технической взаимозаменяемости факторов производства в условиях свободной рыночной конъюнктуры (в частности, широкоизвестная модель Р. Солоу). В новых моделях в отличие от приведенной функции учтено влияние технического прогресса как самостоятельного фактора роста национального дохода. Более того, делались попытки дезагрегировать показатель технического прогресса путем выделения влияющих на него факторов роста уровня образования и квалификации рабочих.  [c.71]

МАКРОЭКОНОМИЧЕСКАЯ ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ [ma roe onomi produ tion fun tion] — агрегатная производственная функция, характеризующая зависимость показателя совокупного общественного продукта страны или иного обобщающего показателя (ВНП, НД и др.) от основных факторов производства (обычно — объема капитала и рабочей силы, реже — в дополнение к ним еще и площади земли). В ряде М.п.ф. в качестве отдельного фактора учитывается также воздействие научно-технического прогресса. М.п.ф. исследуются самостоятельно (см. Кобба—Дугласа функция) или включаются в сложные эконометрические модели (см. Уортонская модель). Подробнее см. Производственная функция.  [c.179]

УОРТОНСКАЯ МОДЕЛЬ [Wharton model] — одна из эконометрических моделей экономики США, предназначенная для поквартального прогнозирования экономической активности и уровня безработицы. Разработана в Уортонекой финансово-коммерческой школе Пенсильванского университета. Включает около 60 уравнений и тождеств, в том числе производственную функцию (типа Кобба—Дугласа функции), кривую Филлипса, ряд уравнений, характеризующих финансово-бюджетную систему. Последнее отличает У. м. от модели Клейна — Гольдберге-ра (см. Клейна модели), развитием которой она является. В У.м. детально рассматриваются основные производственные отрасли, динамика цен. Созданная в конце 1960-х гг. У.м. послужила в дальнейшем основой для разработки ряда как более сложных, так и более простых эконометрических моделей в США и ряде других стран.  [c.369]

Большой вклад в формальную теорию агрегирования внес Натаф [73]. Он доказал, что при разумном агрегировании производственная функция должна быть сепарабельной. При этом объем продукции равен сумме двух составляющих, одна из которых связана с трудом, а другая с капиталом.8 Это условие накладывает сильные ограничения. Из трех уже рассмотренных производственных функций модель затраты—выпуск, очевидно, сепа-рабельна. Функция Кобба—Дугласа не отвечает этому условию, но после логарифмического преобразования становится сепарабельной это объяснение клейновского использования средних геометрических.9 Конечно, функция Кобба—Дугласа хорошо  [c.171]

Калдор далее ограничивает сферу применения этой модели случаями, в которых удовлетворяются два условия минимума прибыли и одно условие минимума реальной заработной платы. Согласно последнему из этих условий, доля прибыли не должна быть настолько большой, чтобы ставка заработной платы, совместимая с полной занятостью, была ниже прожиточного минимума. Первое условие минимума прибыли означает, что норма дохода на вложенный капитал должна быть не меньше, чем минимальная ставка, необходимая, чтобы побудить капиталистов рисковать а в соответствии со вторым условием минимума прибыли существует минимальная ставка дохода от продаж, отражающая рыночные несовершенства (эти ограничения альтернативны по отношению друг к другу только большее из них следует учитывать). Сфера употребления теории, выдвигаемой Калдором, ограничена диапазоном относительных факторных долей, где эти ограничения действуют одновременно. Затем Калдор ограничивает сферу использования своей теории ситуациями, в которых капиталоемкость не зависит от относительных долей труда и капитала в доходе. Это ограничение устраняет возможность применения теории предельной производительности, за исключением особого случая, в котором совокупная (агрегированная) производственная функция имеет вид функции Кобба—Дугласа.  [c.132]