Состоятельность оценок параметров регрессии. Данное свойство состоит в том, что с ростом объема выборки оценка параметра регрессии Ъ сходится к теоретическому значению параметра Р (вычисленного по всей генеральной совокупности), т. е. ошибка оценки стремится к нулю [c.149]
Как было отмечено в 7.1, b — несмещенная и состоятельная оценка параметра р для обобщенной линейной модели множественной регрессии следовательно, и в частном случае, когда мо- [c.156]
Это означает, что при увеличении объема выборки дисперсия оценок параметров регрессии стремится к нулю, то есть оценки параметров регрессии являются состоятельными. [c.107]
Статистические проверки параметров регрессии, показателей корреляции основаны на непроверяемых предпосылках распределения случайной составляющей б,. Они носят лишь предварительный характер. После построения уравнения регрессии проводится проверка наличия у оценок б, (случайных остатков) тех свойств, которые предполагались. Связано это с тем, что оценки параметров регрессии должны отвечать определенным критериям. Они должны быть несмещенными, состоятельными и эффективными. Эти свойства оценок, полученных по МНК, имеют чрезвычайно важное практическое значение в использовании результатов регрессии и корреляции. [c.155]
Как известно (см. гл. 8), при наличии корреляции между ошибками и объясняющими переменными состоятельные оценки параметров в уравнении регрессии можно получить с помощью метода инструментальных переменных. Одна из возможных его реализаций в данном случае выглядит так. Перейдем в уравнении (13.35) к первым разностям [c.381]
Ортогональная регрессия при принятых гипотезах приводит к состоятельным оценкам параметров. [c.33]
Покажите, что в стохастической модели регрессии у = Хр + и с пре положениями (9.18) и (9.19) состоятельная оценка параметра аи есть е е/(п—/г [c.290]
Изучая уравнение линейной регрессии мы предполагали, что реальная взаимосвязь фактора X и отклика 7 линейна, а отклонения от прямой регрессии случайны, независимы между собой, имеют нулевое математическое ожидание и постоянную дисперсию. Если это не так, то статистический анализ параметров регрессии некорректен и оценки этих параметров не обладают свойствами несмещенности и состоятельности. Например, это может быть, если в действительности связь между переменными нелинейна. Поэтому после получения уравнения регрессии необходимо исследовать его ошибки. [c.122]
Степень реалистичности доверительных интервалов параметров регрессии обеспечивается, если оценки будут не только несмещенными и эффективными, но и состоятельными. Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки. Большой практический интерес представляют те результаты регрессии, для которых доверительный интервал ожидаемого значения параметра регрессии 6, имеет предел значений вероятности, равный единице. Иными словами, вероятность получения оценки на заданном расстоянии от истинного значения параметра близка к единице. [c.156]
Отметим, что при соблюдении прочих предпосылок МНК автокорреляция остатков не влияет на свойства состоятельности и несмещенности оценок параметров уравнения регрессии обычным МНК, за исключением моделей авторегрессии. Применение МНК к моделям авторегрессии ведет к получению смещенных, несостоятельных и неэффективных оценок. [c.280]
Сформулируйте свойства несмещенности, состоятельности и эффективности оценок параметров. Обладают ли этими свойствами оценки. параметров линейной регрессии, полученные с помощью МНК [c.311]
Внутригрупповая регрессия в отличие от статических моделей не позволяет получить состоятельные (при фиксированном Т и при га — > оо) оценки параметров. [c.385]
При анализе временных рядов часто приходится учитывать статистическую зависимость наблюдений в разные моменты времени. Иными словами, для многих временных рядов предположение о некоррелированности ошибок не выполняется. В этом разделе мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка (точное определение будет дано ниже). Как было показано ранее (глава 5), применение обычного метода наименьших квадратов к этой системе дает несмещенные и состоятельные оценки параметров, однако можно показать (см., например, Johnston and DiNar-do, 1997), что получаемая при этом оценка дисперсии оказывается смещенной вниз, что может отрицательно сказаться при проверке гипотез о значимости коэффициентов. Образно говоря, МНК рисует более оптимистичную картину регрессии, чем есть на самом деле. [c.184]
При выполнении предпосылок 1)-4) относительно ошибок е( оценки параметров множественной линейной регрессии являются несмещенными, состоятельными и эффективными. Отклонение зависимой переменной у ву-м наблюдении от линии регрессии, ер записывается следующим образом е = у - а0 - atx - a fl -. .. - amxjm. Обозначим сумму квадратов этих величин, которую нужно минимизировать в соответствии с методом наименьших квадратов, через Q. [c.308]
Здесь ut = t — Ae -i- Уравнение (11.9) линейно по комбинациям параметров, через которые эти параметры можно выразить. Однако (11.9) содержит лагированную эндогенную переменную и ошибки, не удовлетворяющие условиям классической модели линейной регрессии. Поэтому можно показать, что МНК-оценки коэффициентов уравнения являются несостоятельными. Для получения состоятельных оценок можно применить метод инструментальных переменных (п. 8.1), взяв, например, Xt— в качестве инструмента для yt-i, или воспользоваться методом максимального правдоподобия (глава 10). [c.268]
Состоятельное оценивание дисперсий. Предположим теперь, что в модели (6.1) с гетероскедастичностью для оценки вектора параметра ft используется обычный метод наименьших квадратов. Как установлено в главе 5, эта оценка является состоятельной и несмещенной, однако стандартная оценка ее матрицы ко-вариаций ((3.8), (ЗД9)) V"(/3OLs) — ff2(X X) l смещена и несостоятельна. Отметим, что компьютерные пакеты при оценивании коэффициентов регрессии вычисляют стандартные ошибки коэффициентов регрессии именно по этой формуле. Можно ли сделать поправку на гетероскедастичность и улучшить оценку матрицы ковариаций Положительный ответ дают приводимые ниже два способа оценивания. [c.173]