При установлении тесноты связи между 7 и Jf решается задача установления строгости соблюдения функциональной зависимости между изменениями 7 и X. Для оценки тесноты связи между случайными переменными величинами используются показатели [c.76]
Как мы уже говорили, одно из главных отличий последовательности наблюдений, образующих временной ряд, заключается в том, что члены временного ряда являются, вообще говоря, статистически взаимозависимыми. Степень тесноты статистической связи между случайными величинами Xt и Xt+T может быть измерена парным коэффициентом корреляции [c.13]
Оценку генерального параметра получают на основе выборочного показателя с учетом ошибки репрезентативности. В другом случае в отношении свойств генеральной совокупности выдвигается некоторая гипотеза о величине средней, дисперсии, характере распределения, форме и тесноте связи между переменными. Проверка гипотезы осуществляется на основе выявления согласованности эмпирических данных с гипотетическими (теоретическими). Если расхождение между сравниваемыми величинами не выходит за пределы случайных ошибок, гипотезу принимают. При этом не делается никаких заключений о правильности самой гипотезы, речь идет лишь о согласованности сравниваемых данных. Основой проверки статистических гипотез являются данные случайных выборок. При этом безразлично, оцениваются ли гипотезы в отношении реальной или гипотетической генеральной совокупности. Последнее открывает путь применения этого метода за пределами собственно выборки при анализе результатов эксперимента, данных сплошного наблюдения, но малой численности. В этом случае рекомендуется проверить, не вызвана ли установленная закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых находится изучаемая совокупность. [c.193]
При этом оказывается, что корреляционные и регрессионные характеристики схемы ( , т] ) могут существенно отличаться от соответствующих характеристик исходной (неискаженной) схемы ( , л)- Так, например, ниже (см. п. 1.1.4) показано, что наложение случайных нормальных ошибок на исходную двумерную нормальную схему ( , т ) всегда уменьшает абсолютную величину коэффициента регрессии Ql в соотношении (В. 15), а также ослабляет степень тесноты связи между ит (т. е. уменьшает абсолютную величину коэффициента корреляции г). [c.46]
Влияние ошибок измерения на величину коэффициента корреляции. Пусть мы хотим оценить степень тесноты корреляционной связи между компонентами двумерной нормальной случайной величины ( , TJ), однако наблюдать мы их можем лишь с некоторыми случайными ошибками измерения соответственно es и е (см. схему зависимости D2 во введении). Поэтому экспериментальные данные (xit i/i), i = 1, 2,. .., л, — это практически выборочные значения искаженной двумерной случайной величины ( , г) ), где = [c.72]
Метод Р.а. состоит в выводе уравнения регрессии (включая оценку его параметров), с помощью которого находится средняя величина случайной переменной, если величина другой (или других в случае множественной или многофакторной регрессии) известна. (В отличие от этого корреляционный анализ применяется для нахождения и выражения тесноты связи между случайными величинами71.) [c.305]
В изучении корреляции признаков, не связанных согласованным изменением во времени, каждый признак изменяется под влиянием многих причин, принимаемых за случайные. В рядах динамики к ним прибавляется изменение во времпш каждого ряда. Это изменение приводит к так называемой автокорреляции — влиянию изменений уровней предыдущих рядов на последующие. Поэтому корреляция между уровнями динамических рядов правильно показывает тесноту связи между явлениями, отражаемыми в рядах динамики, лишь в том случае, если в каждом из них отсутствует автокорреляция. Кроме того, автокорреляция приводит к искажению величины среднеквадратических ошибок коэффициентов регрессии, что затрудняет построение доверительных интервалов для коэффициентов регрессии, а также проверки их значимости. [c.70]
Определенные соотношениями (1.8) и (1.8 ) соответственно теоретический и выборочный коэффициенты корреляции могут быть формально вычислены для любой двумерной системы наблюдений они являются измерителями степени тесно- ты линейной статистической связи между анализируемыми признаками. Однако только в случае совместной нормальной рас-пределенности исследуемых случайных величин и ц коэффициент корреляции г имеет четкий смысл как характеристика степени тесноты связи между ними. В частности, в этом, случае соотношение г — 1 подтверждает чисто функциональную линейную зависимость между исследуемыми величинами, а уравнение г = 0 свидетельствует об их полной взаимной независимости. Кроме того, коэффициент корреляции вместе со средними и дисперсиями случайных величин и TJ составляет те пять параметров, которые дают исчерпывающие сведения о стохастической зависимости исследуемых величин, так как однозначно определяют их двумерный закон распределения (см. [14, с. 171, формула (6.9)]). [c.63]
Следовательно, так же как и в случае парной зависимости, вариация (случайный разброс) результирующего показателя т] складывается из контролируемой нами (по значению предикторной переменной X) вариации функции регрессии / (X) и из не поддающегося нашему контролю случайного разброса значений г (X) (при фиксированном X) относительно функции регрессии / (X). Именно этот неконтролируемый разброс (характеризуемый величиной о (Х)) и определяет одновременно и среднеквадратическую ошибку прогноза (или аппроксимации) величины результирующего показателя г по значениям пре-дикторных переменных X, и степень тесноты связи, существующей между величиной г , с одной стороны, и значениями [c.88]
Если корреляционное отношение превышает трёхкратную ошибку, то это означает, что данный показатель тесноты корреляционной связи между изучаемыми явлениями не является случайной величиной. [c.272]