В качестве целевого функционала задачи идентификации естественно также принимать математическое ожидание положительно определенной квадратичной формы ошибок идентификации. Элементы матрицы D(t) определяют веса, с которыми учитываются сравнительная важность компонент векторов состояния и точность измерения x(t) в различные моменты времени [c.48]
Задачи по оптимизации решаются различными математическими методами, в основе которых лежат теория вероятностей и математическая статистика, линейная алгебра, нелинейное программирование и, в частности, его простейшая форма — квадратичное программирование, а также стохастическое и динамическое программирования и, наконец, матричное исчисление. [c.18]
Дальнейшее совершенствование постановки проблемы, сформулированной в [19], шло по пути более точного отражения отдельных подсистем отрасли, полного охвата их взаимозависимости и взаимовлияния, придания моделям такой математической формы, в которой они могли бы быть реализованы на ЭВМ. Так, в работе [20] уделено внимание формированию функционала задачи на основе учета нелинейной зависимости затрат от объема добычи района-поставщика, глубины и технологии переработки нефти и т. п. (в работе [19] рассматривалось также расширение исходной постановки за счет отказа от условий независимости затрат от объемов добычи и транспортировки нефти. В этом случае задача сводилась к модели квадратичным функционалом и решалась методом последовательных приближений). [c.198]
Функции случайных величин — это функции, значениями которых являются случайные величины. Для оценки ожидаемых результатов и рисков достаточно определить их числовые характеристики как математическое ожидание, дисперсию, стандартное квадратичное отклонение и коэффициент вариации. Если функция не является случайной и может быть задана аналитически или иным путем, например в форме таблиц, то ее числовые характеристики могут быть легко определены по значениям числовых характеристик входящих в ее состав случайных величин. [c.45]
Различается ряд видов Ц.ф. линейная, нелинейная, выпуклая, квадратичная и др. — в соответствии с формой математической зависимости, которую они отображают. Следует также выделить термин "целевой функционал" он применяется обычно, если Ц.ф. задачи является функцией от некоторых функций-ограничений. [c.385]
Проведенные графический и математический анализы на ЭВМ показателей УФ (у) и ПФ (х), оказывающих наиболее существенное влияние величину УФ, по фактическим данным группы электромашиностроительных предприятия показали, что для всех видов УФ из 5 исследованных форм связи УФ и указанными ПФ (линейной, степенной квадратичной, степенной кубической, логарифмической по десятичным логарифмам, логарифмический по натуральным логарифмам) наиболее приемлемой является связь вида [c.525]
Целевая функция — в экстремальных задачах — функция, минимум или максимум которой требуется найти. Это ключевое понятие оптимального программирования. Найдя экстремум целевой функции и, следовательно, определив значения управляемых переменных, которые к нему приводят, мы тем самым находим оптимальное решение задачи. Таким образом, целевая функция выступает как критерий оптимальности решения задачи. Различается ряд видов целевых функций линейная, нелинейная, выпуклая, квадратичная и др. — в соответствии с формой математической зависимости, которую они отображают. Следует также выделить термин целевой функционал он применяется обычно, если целевая функция задачи является функцией от некоторых функций-ограничений. [c.226]
СИЛЬВЕСТР (Sylvester) Джеймс Джозеф (1814-1897) - английский математик, член Лондонского королевского общества. Родился в Лондоне. Важнейшие работы Сильвестра относятся к алгебре, теории чисел, теории вероятностей, механике и математической физике. Он заложил основы теории элементарных делителей двух квадратичных форм, развил теорию канонических форм, т. е. разрешил задачу сведения формы к простейшему виду. Ему принадлежат все термины этой теории инвариант, ковариант, коммутант, дискриминант и т. д. Вообще, он ввел очень много употребляемых в современной математике терминов. Учреждена медаль им. Сильвестра. [c.312]
СПЕЦИФИКАЦИЯ МОДЕЛИ [spe ifi ation of a model] — один из этапов построения экономико-математической модели, на котором на основании предварительного анализа рассматриваемого экономического объекта или процесса в математической форме выражаются обнаруженные связи и соотношения, а значит, параметры и переменные, которые на данном этапе представляются существенными для цели исследования. Иными словами, См. есть выбор формулы связи переменных. Напр., в случае регрессионного анализа выбирается формула регрессии, подходящая для обнаруженных сочетаний независимых и зависимых переменных — линейная, квадратичная или иная. [c.338]