Ковариационная матрица возмущений

Ковариационная матрица возмущений v-t X w/ имеет  [c.419]

Вектор возмущений для преобразованной структурной формы есть Риг и поэтому ковариационная матрица возмущений преобразованной структурной формы имеет вид  [c.365]


Тогда ковариационная матрица возмущений имеет вид  [c.396]

При моделировании реальных экономических процессов мы нередко сталкиваемся с ситуациями, в которых условия классической линейной модели регрессии оказываются нарушенными. В частности, могут не выполняться предпосылки 3 и 4 регрессионного анализа (см. (3.24) и (3.25)) о том, что случайные возмущения (ошибки) модели имеют постоянную дисперсию и не коррелированы между собой. Для линейной множественной модели эти предпосылки означают (см. 4.2), что ковариационная матрица вектора возмущений (ошибок) е имеет вид  [c.150]

В заключение отметим, что для применения обобщенного метода наименьших квадратов необходимо знание ковариационной матрицы вектора возмущений Q, что встречается крайне редко в практике эконометрического моделирования. Если же считать все я(л+1)/2 элементов симметричной ковариационной матрицы Q неизвестными параметрами обобщенной модели (в дополнении к (р+l) параметрам (3/), то общее число параметров значительно превысит число наблюдений я, что сделает оценку этих параметров неразрешимой задачей. Поэтому для практической реализации обобщенного метода наименьших квадратов необходимо вводить дополнительные условия на структуру матрицы Q. Так мы приходим к практически реализуемому (или доступному) обобщенному методу наименьших квадратов, рассматриваемому в 7.11.  [c.155]


Учитывая (7.37), (7.38), ковариационную матрицу вектора возмущений е для модели с автокорреляционными остатками можно представить в виде  [c.183]

В дальнейшем используются следующие обозначения Xt, xt, Zt, ztr q, v — зависимая и независимая переменные при отсутствии и наличии ошибок измерения, ошибки измерения в этих переменных и 1 ы<2> d2> — остаточные возмущения и белый шум в уравнениях для временных рядов и для временных рядов перекрестных выборок М, s2, л(1>, я(2), 2W, 2(2) — математическое ожидание, выборочная дисперсия, остаточные ковариационные матрицы и ковариационные матрицы коэффициентов в уравнениях для временных рядов и временных рядов перекрестных выборок N(0, s2), гг, Т, п, К, Е, i, ML — обозначение нормального распределения, коэффициент остаточной марковской автокорреляции первого порядка, количество наблюдений временного ряда и выборочного обследования, число независимых переменных, единичная матрица и единичный вектор, обозначение оценки наибольшего правдоподобия.  [c.73]

Оценки метода наименьших квадратов параметров модели авторегрессии в широком классе случаев (а именно при условии независимости, одинаковой распределенное и конечности дисперсий участвующих в них случайных возмущений е,, см. (12.2)) являются состоятельными. Асимптотические распределения оценок в устойчивом случае всегда являются нормальными, причем их дисперсия (ковариационная матрица) не зависит от дисперсии возмущений ег В общем случае (т. е. в ситуации, когда некоторые из корней характеристического уравнения (12.17) по модулю превосходят единицу) асимптотическое распределение оценок определяется распределением случайных возмущений е . Математическая модель авторегрессии /n-го порядка xt =  [c.371]


Предположим теперь, что входное возмущение W является случайным сигналом, априорная информация о вероятностном распределении которого исчерпывается следующим W - mi -мерная стационарная гауссовская последовательность, средняя анизотропия которой ограничена сверху известным неотрицательным параметром о. Точнее, последнее означает, что W генерируется из mi-мерного гауссовского белого шума V с нулевым математическим ожиданием и единичной ковариационной матрицей посредством неизвестного формирующего фильтра G, лежащего я семействе  [c.37]

Применение формулы (7.28) для отыскания параметра р, т. е. обобщенный метод наименьших квадратов для модели с гете-роскедасттностъю, когда ковариационная матрица возмущений ZE= есть диагональная матрица (7.26), называется взвешенным методом наименьших квадратов.  [c.164]

Ниже, в 4.3, рассматривается ковариационная матрица вектора возмущений ]Г , являющаяся многомерным аналогом дисперсии одной переменной. Поэтому в новых терминах1 приведенные ранее (с. 61, 82 и здесь) предпосылки для множественного регрессионного анализа могут быть записаны следующим образом 2  [c.86]

МатрицаА/(ее ) представляет собой ковариационную матрицу вектора возмущений  [c.93]

Будем считать, что модель (7.25) гетероскедастич-н а, т. е. дисперсии возмущений (ошибок) ст (/ = ,...,п) не равны между собой, и сами возмущения е/ и е (k = 1,..., я) не кор-релированы. Это означает, что ковариационная матрица вектора возмущений ХЕ = —диагональная  [c.163]

Статистический анализ возмущений е = у — Х/3 обсуждается в 11-14, там будет найден наилучший линейный несмещенный прогноз в случае, когда про ковариационную матрицу известно только то, что она скалярна (BLUS) l, и в случае, когда ковариационная матрица известна (BLUF) 2.  [c.361]

Наконец, мы должны отметить интересный эффект воздействия к оценки структурных коэффициентов измерений в матрицах В и S. Ма1 рица 2 —ковариационная матрица структурных возмущений. Привь воде оценок взаимозависимых уравнений не накладывались огранич  [c.419]

Смотреть страницы где упоминается термин Ковариационная матрица возмущений

: [c.412]    [c.418]    [c.157]    [c.378]   
Эконометрика (2002) -- [ c.93 , c.183 ]