Коэффициенты приведенной формы модели представляют собой нелинейные функции коэффициентов структурной формы модели. Рассмотрим это положение на примере простейшей структурной модели, выразив коэффициенты приведенной формы модели (5/j) через коэффициенты структурной модели Ц- и bt). Для упрощения в модель не введены случайные переменные. [c.182]
Из уравнения следует, что коэффициенты приведенной формы модели представляют собой нелинейные соотношения коэффициентов структурной формы модели, т. е. [c.183]
Аналогично можно показать, что коэффициенты приведенной формы модели второго уравнения системы (<521 и Ь 2) также нелинейно связаны с коэффициентами структурной модели. Для этого выразим переменную ух из второго структурного уравнения модели как [c.183]
Она позволяет получить значения эндогенной переменной с через переменную х. Рассчитав коэффициенты приведенной формы модели (Aq, А,, Во, В,), можно перейти к коэффициентам структурной модели аи Ь, подставляя в первое уравнение приведенной формы выражение переменной х из второго уравнения приведенной формы модели. Приведенная форма модели хотя и позволяет получить значения эндогенной переменной через значения экзогенных переменных, аналитически уступает структурной форме модели, так как в ней отсутствуют оценки взаимосвязи между эндогенными переменными. [c.185]
Приведенная форма модели в полном виде содержит пт параметров. Для нашего примера это означает наличие. шести коэффициентов приведенной формы модели. В этом можно убедиться, обратившись к приведенной форме модели, которая будет иметь вид [c.186]
На основе шести коэффициентов приведенной формы модели требуется определить восемь структурных коэффициентов рассматриваемой структурной модели, что, естественно, не может привести к единственности решения. В полном виде структурная модель содержит большее число параметров, чем приведенная форма модели. Соответственно я (л — 1 + т) параметров структурной модели не могут быть однозначно определены из пт параметров приведенной формы модели. [c.186]
Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели. В этом случае структурные коэффициенты модели оцениваются через параметры приведенной формы модели и модель идентифицируема. Рассмотренная выше структурная модель (4.4) с двумя эндогенными и тремя экзогенными (предопределенными) переменными, содержащая шесть структурных коэффициентов, представляет собой идентифицируемую модель. [c.187]
Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели. Структурная модель в полном виде (4.1), содержащая л эндогенных и т предопределенных переменных в каждом уравнении системы, всегда неидентифицируема. [c.187]
Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. В этой модели число структурных коэффициентов меньше числа коэффициентов приведенной формы. Так, если в структурной модели полного вида (4.1) предположить нулевые значения не только коэффициентов я13 и а21 (как в модели (4.2)), но и а22 — 0, то система уравнений станет сверхидентифицируемой [c.187]
Коэффициенты приведенной формы модели трансформируются в параметры структурной модели. [c.195]
Таким образом, приведенная форма модели содержит мультипликаторы, интерпретируемые как коэффициенты линейной регрессии, отвечающие на вопрос, на сколько единиц изменится значение эндогенной переменной, если экзогенная переменная изменится на 1 ед. своего измерения. Этот смысл коэффициентов приведенной формы делает приведенную модель удобной для прогнозирования. [c.207]
Где Sjj — коэффициенты приведенной формы модели. [c.32]
Коэффициенты приведенной формы модели трансформируются в [c.33]
Наиболее распространенные методы оценивания системы одновременных уравнений. Формальное применение мнк для получения оценок коэффициентов системы одновременных уравнений приводит, вообще говоря, к оценкам с плохими статистическими свойствами — смещенным и несостоятельным. Поэтому область его применения ограничена рекурсивными системами. Для оценивания параметров точно идентифицируемой системы можно применить косвенный метод наименьших квадратов, состоящий в оценивании обычным мнк коэффициентов приведенной формы и подстановке оценок в выра- [c.414]
В то же время, как нетрудно проверить, даже знание точных значений коэффициентов приведенной формы и для исходной, и для усложненной моделей не позволяет сделать никаких выводов относительно структурных параметров второго уравнения. Для этого уравнения также невозможно использовать у или г в качестве инструментальной переменной из-за возникающей при этом линейной зависимости между регрессорами. Это явление тесно связано с так называемой проблемой идентификации, о которой подробно будет говориться ниже. В данном случае нетрудно понять, почему уравнение (9.7) для спроса неидентифицируемо. Действительно, возьмем произвольное число А и составим линейную комбинацию уравнений (9.6) и (9.7), умножая первое на А, второе — на (1 — А) и складывая их [c.228]
Нетрудно понять, что в общем случае эндогенные переменные и ошибки в структурной системе коррелированы (пример 1 данной главы), поэтому, как уже неоднократно отмечалось, применение к какому-либо из уравнений метода наименьших квадратов даст смещенные и несостоятельные оценки структурных коэффициентов. В то же время коэффициенты приведенной формы могут быть состоятельно оценены, поскольку переменные Xt некоррелированы со структурными ошибками et и, следовательно, с ошибками приведенной формы модели vt. [c.233]
Приведенная форма (9.18) позволяет состоятельно оценить mk элементов матрицы П и т(т + 1)/2 элементов матрицы ковариаций вектора ошибок v. В то же время в структурной форме неизвестными являются т2 — т элементов матрицы В (условие нормировки), mk элементов матрицы Г и т(т + 1)/2 элементов матрицы ковариаций вектора ошибок е. Таким образом, превышение числа структурных коэффициентов над числом коэффициентов приведенной формы есть т — т и, следовательно, в общем случае система неидентифицируема. Однако, как было показано ранее (пример 1 данной главы), некоторые структурные коэффициенты или структурные уравнения могут быть идентифицированы. Основная причина этого — наличие априорных ограничений на структурные коэффициенты. [c.234]
Для определенности рассмотрим задачу идентифицируемости первого уравнения системы (9.16) при условии, что какие-то структурные коэффициенты равны 0, т. е. из уравнения исключены некоторые переменные, и идентифицируемость будем понимать как возможность вычисления структурных коэффициентов уравнения по коэффициентам приведенной формы. [c.234]
Эндогенные переменные — t,Yt, It, экзогенная переменная — Gt. Напишите эту модель в матричной форме и найдите ее приведенную форму. Сколько ограничений накладывается на шесть коэффициентов приведенной формы модели и каковы эти ограничения Покажите, что при заданных значениях коэффициентов приведенной формы можно единственным образом получить значения коэффициентов а, /3, 7 и <5, т. е. при заданной матрице П уравнение ВП + Г имеет единственное решение относительно В и Г. [c.241]
По одному последнему уравнению (приведенная форма исходного уравнения) невозможно восстановить значения Д и / i, не зная значения Я. Т.е. мы можем оценить коэффициенты приведенной формы, но не коэффициенты структурной формы (исходного представления ADL(1,1 1)). [c.75]
Однако поскольку в правых частях обоих уравнений приведенной формы находятся одни и те же объясняющие переменные (точнее, одна объясняющая переменная - константа), эффективные оценки коэффициентов приведенной формы получаются раздельным оцениванием обоих уравнений методом наименьших квадратов. Получив таким образом оценки тсл, тсл, мы тем самым получаем [c.127]
В приведенной форме 4 коэффициента, тогда как в структурной форме 5 коэффициентов. Поэтому и здесь нет возможности восстановления всех коэффициентов структурной формы по коэффициентам приведенной формы. Однако кое-что сделать все же можно. [c.128]
Поскольку матрица коэффициентов приведенной формы получается как [c.130]
Матрица коэффициентов приведенной формы [c.131]
Как мы увидим ниже в этом разделе (см. Замечание 5) коэффициенты структурной формы могут не восстанавливаться однозначно по одним только коэффициентам приведенной формы и в то же время однозначно восстанавливаться при привлечении дополнительной информации в виде ограничений на элементы ковариационной матрицы ошибок в правых частях уравнений структурной формы и использовании элементов ковариационной матрицы ошибок в правых частях уравнений приведенной формы. [c.137]
Если нас интересует i -e структурное уравнение, то идентифицируемость этого уравнения означает возможность однозначного восстановления на основании коэффициентов приведенной формы [c.138]
Существенным является то обстоятельство, что коэффициенты i -го структурного уравнения не могут быть восстановлены на основании коэффициентов приведенной формы, если в это уравнение входят все (g ) эндогенные и все (К) предопределенные переменные системы. [c.138]
До сих пор мы рассматривали только возможность восстановления коэффициентов структурных уравнений по коэффициентам приведенной формы. Однако идентифицируемость i -го стохастического структурного уравнения строго говоря означает не только идентифицируемость коэффициентов этого уравнения, но и идентифицируемость дисперсии случайной составляющей в этом уравнении. Идентифицируемость системы структурных уравнений в целом (на основании приведенной формы системы) означает не только идентифицируемость всех коэффициентов системы, но и идентифицируемость ковариационной матрицы случайных ошибок, входящих в правые части уравнений системы. При этом при восстановлении коэффициентов и ковариационной матрицы ошибок в структурной форме используются не только коэффициенты приведенной формы, но и ковариационная матрица ошибок в приведенной форме. [c.151]
Что представляют собой мультипликаторные модели кейнси-анского типа Как интерпретируются коэффициенты приведенной формы такой модели [c.224]
Таким образом, для того, чтобы не возникло противоречие, должно выполняться определенное соотношение между коэффициентами приведенной формы. Встретившаяся ситуация, когда имеются ограничения на коэффициенты приведенной формы, носит название сверхидентифицируемости. [c.411]
Здесь уже в каждом уравнении экзогенная переменная некор-релирована с ошибкой, поэтому метод наименьших квадратов даст состоятельные оценки тг и 7 2 коэффициентов тг и тг . Заметим, что а% = 7Г1/ТГ2, поэтому (в силу теоремы Слуцкого) величина aziLS — KI/KZ будет состоятельной оценкой структурного параметра 2- Такой способ оценивания структурных коэффициентов с помощью оценок коэффициентов приведенной формы [c.226]
Коэффициенты приведенной формы модели могут быть состоятельно оценены методом наименьших квадратов. Эти оценки могут быть использованы для оценивания структурных параметров (косвенный метод наименьших квадратов). При этом возможны три ситуации структурный коэффициент однозначно выражается через коэффициенты приведенной системы, структурный коэффициент допускает несколько разных оценок косвенного метода наименьших квадратов, структурный коэффициент не может быть выражен через коэффициенты приведенной системы. В последнем случае соответствующее структурное уравнение является неидентифицируемым. Неидентифицируемость уравнения не связана с числом наблюдений. [c.229]
Мы не будем давать формального определения идентифицируемости структурной модели, а для более подробного ознакомления с этой проблемой можем рекомендовать, например (Greene, 1997, глава 16). Говоря же нестрого, тот или иной структурный коэффициент идентифицируем, если он может быть вычислен на основе коэффициентов приведенной формы. Соответственно какое-либо уравнение в структурной форме модели будет называться идентифицируемым, если идентифицируемы все его коэффициенты. Подчеркнем еще раз, что [c.233]
Коэффициенты приведенной формы, 226, 233, 234 Критерий Акаике, 307 [c.571]
В ситуации 1 просто не выполнено необходимое условие идентифицируемости. В ситуациях 2 и 3 коэффициенты i -го структурного уравнения однозначно восстанавливаются на основании коэффициентов приведенной системы. Однако эти две ситауции различаются существенным образом, если рассматривать задачу восстановления коэффициентов i -го структурного уравнения на основании оценок коэффициентов приведенной формы, полученных методом наименьших квадратов, примененным к каждому отдельному уравнению приведенной системы и не учитывающем ограничения на коэффициенты приведенной формы, [c.140]