Оценивание и доверительные интервалы

Наряду с интервальным оцениванием коэффициентов регрессии по (4.23 ) весьма важным для оценки точности определения зависимой переменной (прогноза) является построение доверительного интервала для функции регрессии или для условного математического ожидания зависимой переменной Л/Х(У), найденного в предположении, что объясняющие переменные Х, Х2,..., Хр приняли значения, задаваемые вектором X Q =(l x10 x20. .. хр0).  [c.98]


Интервал (04 , 042) называется доверительным, его границы 04 и 0W, являющиеся случайными величинами, соответственно нижним и верхним доверительными пределами. Любая интервальная оценка может быть охарактеризована совокупностью двух чисел шириной доверительного интервала Н = 04 — 0И, являющейся мерой точности оценивания параметра 0, и доверительной вероятностью у, характеризующей степень достоверности (надежности) результатов. Чаще всего в расчетах используется величина у равная 0,9 0,95 и реже 0,8 0,85 0,99 0,999.  [c.53]

Проверка гипотез при двусторонней критической области тесно связана с интервальным оцениванием. При одном и том же уровне значимости а и объеме выборки п попадание гипотетического значения исследуемого параметра в доверительный интервал равносильно попаданию соответствующего критерия в область принятия гипотезы. Поэтому для проверки гипотезы в этом случае можно использовать доверительный интервал. Если гипотетическое значение исследуемого параметра попадает в этот интервал, то делают вывод, что нет оснований для отклонения выдвигаемой гипотезы. Более подробно данная связь рассмотрена в примерах 3.2 - 3.8.  [c.75]


Точечная оценка применяется при оценивании параметра генеральной совокупности при помощи одного статистического значения, тогда как интервальная оценка предусматривает определение двух границ интервала, внутри которого расположен параметр генеральной совокупности, причем его значение определяют с избранной доверительной вероятностью.  [c.135]

После получения точечной оценки 0 желательно иметь данные о надежности такой оценки. Особенно важно иметь сведения о точности оценок для небольших выборок (поскольку с возрастанием объема n выборки несмещенность и состоятельность основных оценок гарантируется утверждениями математической статистики). Поэтому точечная оценка может быть дополнена интервальной оценкой - интервалом (0Ь 02), внутри которого с наперед заданной вероятностью у находится точное значение оцениваемого параметра 0. Задачу определения такого интервала называют интервальным оцениванием, а сам интервал - доверительным интервалом. При этом у называют доверительной вероятностью или надежностью, с которой оцениваемый параметр 0 попадает в интервал (0ь 02).  [c.64]

В V.A.3 мы приведем ряд хорошо известных результатов для доверительных интервалов и критериев для среднего одной нормальной совокупности или разности между средними двух нормальных совокупностей. Мы обсудим, например, /-критерий для одной либо двух совокупностей с неизвестными и возможно различными дисперсиями. Рассматриваются предположения -критерия и имитационное моделирование, а также биномиальное распределение и оценивание квантилей. В V.A.4 изучается определение объема выборки. Для доверительного интервала заданной длины обсуждается двойная выборка и (асимптотически состоятельная и эффективная) последовательная выборка. Многочисленные применения в моделировании и экспериментах Монте-Карло показывают, что правила останова срабатывают. Мы также определим объем выборки для проверки гипотез с заданными ошибками аир при применении двойной выборочной процедуры. В качестве альтернативы можно взять подход, основанный на селекции ( зона безразличия ), который отбирает с заданной надежностью уточненную совокупность. Эвристический последовательный метод применен в имитационном эксперименте. Проверку гипотез с заданными ошибками а и р и строго последовательной выборкой можно осуществить по критерию последовательного отношения вероятностей Вальда (Wald) (КПОВ) (при условии, что нет мешающих параметров следовательно, для биномиальной совокупности существует точный КПОВ). Часть А заканчивается приложениями, упражнениями и библиографией.  [c.121]


Рассмотрим традиционный уровень ошибки а в доверительном интервале и проверку гипотез> относительно только одной совокупности. Доверительный интервал можно определить, например, в виде содержится в интервале х + tfn-i) s (x) . В V.A.3 мы видели, что это утверждение о доверительности легко может быть переформировано в утверждение о значимости при проверке гипотезы Я0 и = = л (для любого pi0). Если доверительный интервал не содержит 0, то мы отбрасываем Я0. Поскольку подход, основанный на доверительных интервалах, более общий по сравнению с подходом, основанным на проверке гипотез, мы будем пользоваться формулировками в терминах доверительных интервалов (оценивания). Итак, будем следовать Тьюки, который подчеркивал преимущество использования доверительных интервалов (см., например, [Kurtz et al., 1965, p. 148—149] или flukey, 1953, p. 247—256])".  [c.170]

Смотреть страницы где упоминается термин Оценивание и доверительные интервалы

: [c.100]    [c.80]    [c.35]