Анализ статистической значимости коэффициентов линейной регрессии

Анализ статистической значимости коэффициентов линейной регрессии  [c.299]

Модели парной регрессии. Парная линейная регрессия. Методы оценки коэффициентов регрессии. Метод наименьших квадратов (МНК). Свойства оценок МНК. Оценка статистической значимости коэффициентов регрессии. Элементы корреляционного анализа. Измерители тесноты связи (коэффициенты ковариации, корреляции и детерминации). Оценка значимости коэффициента корреляции. Дисперсионный анализ результатов регрессии. Оценка статистической значимости уравнения регрессии. Анализ ряда остатков условия Гаусса-Маркова. Нелинейные модели регрессии и их линеаризация. Выбор функции регрессии тесты Бокса-Кокса. Корреляция в случае нелинейной регрессии. Средняя ошибка аппроксимации.  [c.3]


Для анализа статистической значимости полученных коэффициентов множественной линейной регрессии необходимо, как и в случае парной регрессии, оценить дисперсию и стандартные отклонения коэффициентов а.  [c.309]

Если (п-т- ), то есть число степеней свободы, достаточно велико (не менее 8-10), то при 5%-ном уровне значимости и двусторонней альтернативной гипотезе критическое значение f-статистики приблизительно равно двум. Здесь, как и в случае парной регрессии, можно приближенно считать оценку незначимой, если /-статистика по модулю меньше единицы, и весьма надежной, если модуль t-статистики больше трех. Другие критерии качества полученного уравнения регрессии будут рассмотрены в следующей главе. Там же будут приведены и примеры статистического анализа значимости коэффициентов множественной линейной регрессии.  [c.309]


Соответствующий статистический вывод включает определение тесноты и значимости Ж Тесноту бвязи измеряют коэффициентом детерминации В парной регрессии представляет собой квадрат линейного коэффициента корреляции. Коэффициент изменяется от 0 до Он показывает долю от полной вариации Y, которая обусловлена вариацией переменной Разложение полной вариации переменной 7аналогично разложению полной вариации в дисперсионном анализе (глава 16). Как показано на рис. 17.5, полная вариация раскладывается на которую можно объяснить, исходя из линии регрессии и вариацию ошибки или остаточную вариацию, или , . ... ...  [c.656]