Многоэтапная стохастическая задача управления 351 [c.474]
Модели стохастического управления, в которых закон управления или механизм управления учитывает последовательный характер накопления информации и может уточняться в процессе управления, описываются многоэтапными стохастическими задачами. Целевой функционал динамической задачи зависит от состояния системы на конечном (.S-M) этапе или от всей траектории системы. Область определения задачи отдельного этапа описывается жесткими или условными статистическими или условными вероятностными ограничениями. Оптимальные решающие правила или решающие распределения этих задач определяют законы управления или механизмы стохастического управления. [c.46]
Численные методы анализа многоэтапных стохастических задач в жесткой постановке весьма громоздки, и с увеличением размерности управлений и числа этапов трудоемкость решения задач быстро растет. Методы динамического программирования перестают быть эффективными уже при размерности состояний системы, равной трем. Методы, основанные на схемах блочного программирования, применимы лишь при конечном (относительно небольшом) числе реализаций наборов параметров условий задачи. Метод стохастического градиента неконструктивен при числе этапов, большем двух. Теоретически корректный метод случайного поиска, предложенный в [ПО], связан с большими вычислительными трудностями. [c.202]
Постановки задач многоэтапного стохастического программирования с условными статистическими ограничениями и методы анализа решающих правил, соответствующих различной информации о состоянии системы в момент выбора решений, могут быть при некоторой модификации интерпретированы как модели и методы анализа многоуровневых иерархических систем управления, работающих в условиях неполной информации. Задание подкласса измеримых функций, из которого следует выбирать решающие правила, определяет здесь взаимодействие, координацию, управление и характер обмена информацией между звеньями одного уровня и звеньями. различных уровней. Представляется, что синтез многоэтапных и многоуровневых стохастических моделей выбора решений является основой формального аппарата качественного исследования и численного анализа сложных систем управления. [c.196]
Соотношения между решающими правилами задач стохастического программирования с условными и безусловными статистическими ограничениями определяются следующей теоремой, являющейся естественным обобщением утверждения, установленного в [340] для частной линейной многоэтапной задачи управления в условиях неполной информации. [c.198]
Типичная многоэтапная задача стохастического управления имеет вид [c.46]
Ограничения k-ro этапа (t = k 2) содержат в качестве параметров условий задачи элементы матрицы А координаты вектора состояния системы для i< k и составляющие вектора управления для ts k — 1. На k-м этапе вычисляют u(k) — вектор управления, отвечающий t = k. Напомним, что показатель качества решения многоэтапной задачи стохастического управления зависит от конечного состояния системы или от всей траектории объекта х(0),. . ., x(s — 1) и управляющего устройства и(0),. .., u(s-l). [c.51]
Первой попыткой перехода от статических моделей стохастического программирования к динамическим была, по-видимому, двухэтапная задача Данцига — Маданского. Двухэтапная задача может быть обобщена в различных направлениях. Естественно, например, перейти к многоэтапной задаче с жесткими ограничениями (с ограничениями, которые должны выполняться при всех возможных реализациях случая, подобно тому, как это предполагается в классической двухэтапной задаче). Такого рода подходы рассматривались Беллманом [10], Дж. Данцигом [88], Н. 3. Шором и др. [332, 334—336]. Здесь мы, однако, рассмотрим более широкие обобщения двухэтапной задачи — различные постановки многоэтапных стохастических задач с безусловными и условными статистическими, вероятностными и жесткими ограничениями. Частные модели подобного типа обсуждались в [70, 308—310] и других работах. Многоэтапные модели стохастического программирования имеют многочисленные приложения к задачам планирования в экономике и технике. Ряд практических проблем, возникающих при перспективном планировании, при многостадийном проектировании, при управлении боевыми операциями, при планировании экспериментов и оперативном управлении космическими объектами, при регулировании технологических процессов, подверженных случайным возмущениям, может быть рассмотрен как многоэтапные стохастические задачи со статистическими вероятностными и жесткими ограничениями. [c.192]
Настоящая монография содержит пятнадцать глав. В гл. 1, носящей вводный характер, классифицируются постановки задач стохастического программирования, приводится краткая историческая оправка и излагается вспомогательный математический аппарат. Глава 2 посвящена анализу постановок различных технических и экономических прикладных задач управления в условиях неполной информации. Содержание последующих девяти глав связано с активным подходом к стохастическому программированию — (формальной основой для выбора решений в условиях неполной информации. В гл. 3—5 исследуются од-ноэтапные стохастические задачи с вероятностными и статистическими ограничениями, решаемые в чистых и смешанных стратегиях, в априорных и апостериорных решающих правилах и решающих распределениях. Главы 6—8 посвящены теории и вычислительным схемам классической двухзтапной задачи стохастического программирования. В гл. 9—11 описаны динамические модели управления в условиях неполной информации — многоэтапные задачи стохастического программирования с условными и безусловными статистическими и вероятностными ограничениями с априорными и апостериорными решающими правилами. [c.6]
В технических проблемах автоматического регулирования разделение задачи управления на задачи идентификации и собственно управления обычно не вытекает из существа дела. Искусственное расчленение задачи, как правило, упрощает расчеты и организацию управления, однако нередко снижает при этом качество решения общей проблемы. Стохастическое управление, при котором в процессе регулирования устанавливаются и постепенно уточняются характеристики управляемого объекта—существенно более сложная задача. Она описывается многоэтапной моделью стохастического врограммирсвания. [c.49]
Естественным обобщением двухэтапных задач являются многоэтапные задачи стохастического программирования. Часто в процессе управления представляется возможность последовательно наблюдать ряд реализаций параметров условий и соответствующим образом корректировать план. Естественяо, что >при составлении предварительного плана и при последовательной коррекции должны учитываться априор- [c.13]