Многомерная случайная величина функция распределения

Многомерные случайные величины (вектора), функция распределения случайного вектора. Дискретные и абсолютно непрерывные многомерные распределения.  [c.30]


Изменение физической величины вдоль любого направления случайного поля аналогично случайному процессу с той лишь разницей, что роль времени играет пространственная координата. Оно задается соответствующими многомерными функциями распределения вероятности физической величины.  [c.187]

В предыдущей главе (см. п. 5.1) уже упоминалось, что если анализируемые переменные ( (1), (2),. .., (/7) т]) подчиняются (р + 1)-мерному нормальному закону распределения, то истинная функция / (X) регрессии т] по (1),..., (/7) принадлежит классу линейных (по x(k k = 1,2,..., р) функций (6.4). Однако статистическая проверка многомерной нормальности изучаемой векторной случайной величины относится к задачам, до сих пор плохо оснащенным достаточно эффективным инструментарием для их решения (см. сноску к с. 152 [14]). К тому же возможны ситуации, когда анализируемый многомерный признак (Ц1),..., < >> т]) не является нормальным, но в то же время регрессия г по ( (1),..., (р)) линейна.  [c.180]


Пусть выполняется условие нормальной линейной регрессионной модели ЛГ(0,<72/П), т.е. е — многомерная нормально распределенная случайная величина, или, что то же самое, Yt имеют совместное нормальное распределение. Тогда МНК-оценки коэффициентов регрессии a, b также имеют совместное нормальное распределение, так как они являются линейными функциями (2.4а), (2.46) от Yt  [c.46]

В общем случае для нахождения этой вероятности требуется вычислять многомерные интегралы по соответствующим областям от плотности совместного распределения ошибок у. Как правило (в частности, для нормально распределенных ошибок у), эти интегралы невозможно выразить аналитически, а можно лишь найти численно, что, в конечном итоге, делает модель не применимой на практике. Есть, однако, некоторое специальное распределение, для которого вероятность P(yt — j) в (12.11) допускает достаточно простое представление. Предположим, что ошибки etj независимы и имеют функцию распределения F(x) — ехр(— е х) (такое распределение возникает при изучении максимума независимых случайных величин, поэтому его часто называют распределением экстремальных значений). Тогда можно доказать, что  [c.331]

СЛУЧАЙНАЯ ФУНКЦИЯ [random fun tion] — "функция X t) произвольного аргумента t, t е Т, значения которой при любом t являются случайной величиной с определенным распределением вероятностей"76. Если t принимает числовые значения, которые интерпретируются как время, имеем случайный процесс (напр., в частном случае — временной ряд) если значения t рассматриваются как точки из некоторой области многомерного пространства — имеем случайное поле.  [c.332]

Случайные процессы. В экономике проблема изучения поведения объектов во времени — одна из важнейших. Очевидно, что и здесь вероятностные модели могут оказаться пригодными для их описания. Изучением соответств. математич. проблем занимается теория случайных процессов. В Т. в. под случайным процессом понимается параметрич. семейство случайных величин (t). В приложениях обычно параметр t — время (при этом говорят о случайной функции, при многомерном t — процесс (t) чаще называют случайным полем). В случаях, когда t дискретно, последовательность Si = I (h), ( 2), - li = i (li)--- называют временным рядом. Случайный процесс может быть полностью охарактеризован совокупностью совместных функций распределения случайных величин (ti), (г2),. .., (tn) для всевозможных моментов времени и любого п > 0.  [c.110]


Оценивание параметров. Предположим, что распределение случайной величины X (генеральной совокупности) зависит от некоторого (возможно, многомерного) неизвестного параметра в F(x) = Р(х в), в б в С R . Общая задача оценивания заключается в получении каких-либо выводов о параметре в на основании наблюдений Xi,..., Xn. Различают точечное и интервальное оценивание. Любая функция (рп - Rn — называется точечной оценкой (или просто оценкой) параметра в. Часто используется обозначение в = ipn(X, . . . , Хп)- В русскоязычной литературе по статистике, как правило, одним и тем же термином оценка называют как функцию (рп, так и ее значение в для конкретных наблюдений Х ,. . . , Хп. В английском языке эти объекты различают, называя (рп estimator, а величину в — estimate. Поэтому правильнее было бы называть функцию <рп методом оценивания, сохранив название оценка за величиной в, однако такая тер-  [c.532]

Смотреть страницы где упоминается термин Многомерная случайная величина функция распределения

: [c.61]    [c.183]    [c.537]   
Эконометрика (2002) -- [ c.36 , c.37 ]