Система уравнений правдоподобия

Решением системы уравнений (2.37а)-(2.37в) являются оценки максимального правдоподобия  [c.57]


При наличии достаточных вычислительных возможностей и доступности соответствующих программ нет других аргументов для выбора одной из следующих трех процедур оценивания системы уравнений двухшаговый метод наименьших квадратов, метод максимального правдоподобия с полной информацией, трехшаговый метод наименьших квадратов. Обсудите это утверждение.  [c.425]

Полученные из системы нелинейных уравнений (72) Ва = р" < ], V. "sf(2> подставляются в (67)—(68), (70). Эти Ъ8, , s <2) и будут асимптотическими оценками наибольшего правдоподобия, которые и подставляются в (61) для получения точечного прогноза.  [c.82]

Вторую группу составляют методы, использующие полную информацию о системе, т. е. о строении ее уравнений и о степени их стохастической зависимости. Наиболее известными представителями этой группы являются трехшаговый метод наименьших квадратов, рассмотренный в 14.4.3, и метод максимального правдоподобия. Между оценками, получаемыми при помощи этих методов, существует тесная взаимосвязь 3 мнк-оценки можно рассматривать в качестве первого приближения оценок метода максимума правдоподобия, по определению минимизирующих функцию плотности распределения наблюдений (в предположении, что они распределены по нормальному закону). Более того, указанные оценки асимптотически эквивалентны.  [c.423]


Учебник содержит систематическое изложение основ эконометрики и написан на основе лекций, которые авторы в течение ряда лет читали в Российской экономической школе и Высшей школе экономики. Подробно изучаются линейные регрессионные модели (метод наименьших квадратов, проверка гипотез, гетероскедастичность, автокорреляция ошибок, спецификация модели). Отдельные главы посвящены системам одновременных уравнении, методу максимального правдоподобия в моделях регрессии, моделям с дискретными и ограниченными зависимыми переменными.  [c.2]

И лишь оценивание параметров квадратичных форм функции общей полезности делает задачу более сложной, поскольку возникает необходимость построения системы уравнений, аналогичной (11.7.4) за ряд лет, и оценивание параметров этих уравнений по методу наименьших квадратов (методу максимального правдоподобия) и иным двух- и трехшаговым вычислительным процедурам. И хотя показанный метод обладает рядом существенных недостатков, его сравнительная простота делает его широкоиспользуемым [129.242] в прикладных статистических исследованиях.  [c.248]

Метод максимального правдоподобия рассматривается как наиболее общий метод оценивания, результаты которого при нормальном распределении признаков совпадают с МНК Однако при большом числе уравнений системы этот метод приводит к достаточно сложным вычислительным процедурам. Поэтому в качестве модификации используется метод максимального правдоподобия при ограниченной информации (метод наименьшего дисперсионного отношения), разработанный в 1949 г. Т.Андер-соном и Н.Рубиным. Математическое описание метода дано, например, в работе Дж.Джонстона1.  [c.194]


Теперь займемся задачей оценивания системы одновременных уравнений, предположив, что имеющихся ограничений достаточно для идентифицируемости. Для получения оценки максимального правдоподобия структурных параметров (В , FQ, 1о) нужно максимизировать логарифмическую функцию правдоподобия (2.11) с учетом априорных и идентифицируемых ограничений. Такой способ оценивания известен как метод максимального правдоподобия при полной информации (FIML) 1. Поскольку для нахождения FIML-оценок приходится оптимизировать нелинейную функцию, реализация этого метода может оказаться довольно сложной вычислительной задачей.  [c.422]

Для оценивания произвольных систем одновременных уравнений в настоящее время имеется довольно значительное количество методов, которые делятся на две группы. К первой группе относятся методы, применимые к каждому уравнению в. отдельности двухшаговый метод наименьших квадратов (2 мнк), метод максимума правдоподобия с ограниченной информацией, называемый также методом наименьшего дисперсионного соотношения [46] или методом Комиссии Коулса [80], и некоторые другие. Вторая группа содержит методы, предназначенные для оценивания всей системы в целом. Это методы максимума правдоподобия и трехшаговый метод наименьших квадратов (3 мнк). Несколько особняком стоят итеративные методы, или методы неподвижной точки, которые обладают определенными вычислительными достоинствами, что немаловажно при исследовании систем большой размерности, однако статистические их свойства изучены в недостаточной степени.  [c.415]

Метод максимального правдоподобия с полной информацией слу> для оценивания всей системы в целом. С точки зрения вычислений гораздо более трудоемок по сравнению со всеми рассмотренными н методами оценивания, так как он включает решение системы нелин ных уравнений. Кроме того, возникает угроза, что из-за недоста степеней свободы мы сможем применить этот метод только к достато малым моделям. Рассмотрим общую линейную модель, содержаш G текущих значений эндогенных переменных  [c.398]

Эконометрика (2002) -- [ c.187 ]