Имитационный метод оценки эффективности проектов на основе вероятностного подхода предполагает построение имитационной модели реализации инвестиционного проекта. Эта модель служит для нахождения закона распределения вероятностей ожидаемого эффекта и его статистических характеристик (математического ожидания, среднеквадратичного отклонения и др.). Зная закон распределения случайной величины, всегда можно определить вероятность ее попадания в любой интервал, например в интервал убытков. [c.306]
В преодолении некоторых из отмеченных выше трудностей могут помочь более строгие статистические методы в случае взаимозависимых случайных величин можно применять, например, условные вероятности и правило Байеса, а для решения проблемы дискретности оценок — закон нормального распределения и предназначенные для него инструменты анализа. Детальное рассмотрение подобных методов выходит за рамки данной книги, но сделать два замечания по их поводу имеет смысл. [c.423]
Дисперсия - наиболее широко применяемая оценка рассеяния случайных величин. Это связано с тем, что она обладает свойством аддитивности, то есть дисперсия суммы статистически независимых случайных величин равна сумме дисперсий этих величин, безотносительно к разнообразию законов распределения каждой из суммируемых величин и возможной деформации законов распределения при суммировании. Отметим, что среднеквадратичное отклонение не аддитивно. [c.21]
Проверка статистических гипотез о равенстве средних. При исследовании часто возникает вопрос о сравнении центров распределения двух или более случайных величин. Здесь важно выяснить, являются ли полученные статистические оценки математического ожидания по разным выборкам оценкой одного и того же математического ожидания для определенного закона распределения F(x). [c.60]
Определение вида закона распределения случайной величины по опытным данным занимает одно из центральных мест при обработке результатов экспериментов статистическими методами. Традиционный подход при решении задачи сводится к расчету параметров эмпирического распределения, принятию их в качестве оценок параметров генеральной совокупности с последующей проверкой сходимости эмпирического распределения с предполагаемым теоретическим по критериям х2 (Пирсона), А. (Колмогорова), со2. Такой подход имеет следующие недостатки зависимость методики обработки результатов эксперимента от предполагаемого теоретического распределения, большой объем вычислений, особенно при использовании критериев со2 и %2. Некоторые новые критерии [82] не имеют удовлетворительного теоретического обоснования, а в ряде случаев, как это показано в работе [82], не обладают достаточной мощностью. Б.Е. Янковский [133] предложил информационный способ определения закона распределения. Суть его в следующем. Если имеется выборка с распределением частос-тей Р, Р2> . Рп > то энтропия эмпирического распределения должна совпадать с энтропией предполагаемого теоретического распределения при верной нулевой гипотезе, т. е. должно выполняться равенство [c.27]
Введение в эмпирический анализ основные характеристики случайных величин, средние, распределение частот (вероятностей), группировки статистических данных, центр распределения, разброс, ассиметрия, эксцесс закон больших чисел качественная однородность совокупности основные типы распределения вероятности в эконометрии показатели измерения связи регрессионный анализ модель регрессии в эконометрии и математической статистике метод наименьших квадратов вероятностные гипотезы несмещенность, состоятельность и эффективность оценок следствия нормальности распределения ошибок критерий Стьюдента критерий Фишера мультиколлинеарность шаговая [c.130]