Человек и окружающая его среда гармонично взаимодействуют и развиваются лишь в условиях, когда потоки вещества, энергии и информации находятся в пределах, благоприятно воспринимаемых человеком и природной средой. Любое превышение привычных уровней потоков сопровождается негативными воздействиями на человека и/или окружающую среду. [c.5]
Взаимодействие человека со средой обитания может быть позитивным или негативным, характер взаимодействия определяют потоки веществ, энергий и информации. [c.6]
Опасности не обладают избирательным свойством, при своем возникновении они негативно воздействуют на всю окружающую их материальную среду. Влиянию опасностей подвергается человек, природная среда, материальные ценности. Источниками (носителями) опасностей являются естественные процессы и явления, техногенная среда и действия людей. Опасности реализуются в виде потоков энергии, вещества и информации, они существуют в пространстве и во времени. [c.12]
Безопасность — состояние объекта защиты, при котором воздействие на него всех потоков вещества, энергии и информации не превышает максимально допустимых значений. [c.15]
Аксиома 1. Техногенные опасности существуют, если повседневные потоки вещества, энергии и информации в техносфере превышают пороговые значения. [c.18]
При высоких концентрациях вредных веществ или при высоких потоках энергии вредные факторы по характеру своего воздействия [c.19]
Уменьшить потоки веществ, энергий или информации в зоне деятельности человека можно, уменьшая эти потоки на выходе из источника опасности или увеличивая расстояния от источника до человека. Если это практически неосуществимо, то нужно применять защитные меры защитную технику, организационные мероприятия и т. п. [c.20]
Энергия, необходимая человеку для совершения различных видов работы, высвобождается в его организме в процессах окислительно-восстановительного распада углеводов, белков, жиров и других органических соединений, содержащихся в продуктах питания. Окислительно-восстановительные реакции в живых организмах могут протекать как с участием кислорода (аэробное окисление), так и без участия кислорода (анаэробное окисление). Анаэробное окисление характеризуется меньшим количеством высвобождаемой энергии и имеет ограниченное значение у высших организмов. [c.25]
При аэробном окислении 1 г жира в организме высвобождается 38,94, а при окислении 1 г белка или 1 г углеводов — 17,16 кДж энергии. [c.25]
Высвобожденная энергия частично расходуется на совершение полезной работы, а частично (до 60 %) рассеивается в виде теплоты в живых тканях, нагревая тело человека, [c.25]
Основной обмен характеризуется величиной энергетических затрат в состоянии полного мышечного покоя в стандартных условиях (при комфортной температуре окружающей среды, спустя 12... 16 ч после приема пищи в положении лежа). Расход энергии в этих условиях составляет 87,5 Вт для человека массой 75 кг. [c.25]
При изменении положения тела либо при совершении любой работы энергетические затраты повышаются по сравнению с основным обменом. Дополнительные затраты энергии зависят от рабочей позы тела, интенсивности мышечной деятельности, информационной насыщенности труда, степени эмоционального напряжения и других факторов. В положении сидя за счет работы мышц туловища затраты энергии превышают на 5... 10 % уровень основного обмена, в положении стоя — на 10...15, при вынужденной неудобной позе —на 40...50 %. [c.25]
При интенсивной интеллектуальной работе потребности мозга в энергии составляют 15.. .20 % основного обмена (масса мозга составляет около 2 % массы тела). Повышение суммарных энергетических затрат при умственной работе определяется степенью нервно-эмоциональной напряженности. Так, при чтении вслух сидя расход энергии повышается на 48, при выступлении с публичной лекцией —на 94, у операторов вычислительных машин —на 60...100 %. [c.25]
Динамическая работа — процесс сокращения мышц, приводящий к перемещению груза, а также самого тела человека или его частей в пространстве. При этом энергия расходуется как на поддержание определенного напряжения в мышцах, так и на механический эффект работы. Величина динамической нагрузки определяется по формуле [c.28]
Работоспособность создается в результате происходящих в организме процессов в нервной системе, двигательном аппарате, органах дыхания и кровообращения, которые определяют потенциальные возможности человека выполнять конкретную работу при заданных режимах. При непрерывной работе мышцы, нервные клетки и различные органы могут расходовать только определенное количество энергии, не превышающее предела работоспособности. [c.31]
К легким работам (категория I) относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию 1а (затраты энергии до 139 Вт) и категорию 16 (затраты энергии 140...174 Вт). К работам средней тяжести (категория II) относят работы с затратой энергии 175...232 (категория Па) и 233...290 Вт (категория Нб). В категорию На входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию Пб — работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.). К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.). [c.37]
В горячих цехах промышленных предприятий большинство технологических процессов протекает при температурах, значительно превышающих температуру воздуха окружающей среды. Нагретые поверхности излучают в пространство потоки лучистой энергии, которые могут привести к отрицательным последствиям. Инфракрасные [c.39]
Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма — гипотермии. В начальный период воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличиваются. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задерживать снижение температуры внутренних органов. Результатом действия низких температур являются холодовые травмы. [c.40]
Основным достоинством аэрации является возможность осуществлять большие воздухообмены без затрат механической энергии. К недостаткам аэрации следует отнести то, что в теплый период года эффективность аэрации может существенно падать вследствие повышения температуры наружного воздуха и то, что поступающий в помещение воздух не очищается и не охлаждается. [c.41]
Кроме материальных отходов, работа производств и реализация различных технологий связана с поступлением в среду обитания потоков энергии различных видов механической (шум, вибрация), тепловой, электромагнитной и т. п. [c.63]
В этом отношении поучителен опыт Швеции с начала 50-х годов XX столетия в стране проводится кампания по экономии энергии, в том числе путем уменьшения проветривания помещений. В результате средняя концентрация радона в помещении возросла с 43 до 133 Бк/м3 при снижении воздухообмена с 0,8 до 0,3 м3/ч. По оценкам, на каждый 1 ГВт/год электроэнергии, сэкономленной за счет уменьшения проветривания помещений, шведы получили дополнительную коллективную дозу облучения в 5600 чел-Зв. [c.69]
Критериями безопасности техносферы при загрязнении ее отходами являются предельно допустимые концентрации веществ (ПДК) и предельно допустимые интенсивности потоков энергии (ПДУ) в ее жизненном пространстве. [c.70]
Для потоков энергии их текущие значения устанавливаются соотношениями [c.70]
ПДК и ПДУ лежат в основе определения предельно допустимых выбросов (сбросов) или предельно допустимых потоков энергии для источников загрязнения среды обитания. Опираясь на значения ПДК и ПДУ и зная фоновые значения концентраций веществ (Сф) и потоков энергии (7Ф) в конкретном жизненном пространстве, можно определить предельно допустимые выбросы (сбросы) примесей (энергии) для конкретных источников загрязнения среды обитания. [c.71]
Предельно допустимые выбросы (сбросы) и предельно допустимые излучения энергии источниками загрязнения среды обитания являются критериями экологичности источника воздействия на среду обитания. Соблюдение этих критериев гарантирует безопасность жизненного пространства. [c.71]
Производственная среда — это часть техносферы, обладающая повышенной концентрацией негативных факторов. Основными носителями травмирующих и вредных факторов в производственной среде являются машины и другие технические устройства, химически и биологически активные предметы труда, источники энергии, нерегламентированные действия работающих, нарушения режимов и организации деятельности, а также отклонения от допустимых параметров микроклимата рабочей зоны. [c.71]
В тех случаях, когда потоки масс и/или энергий от источника негативного воздействия в среду обитания могут нарастать стремительно и достигать чрезмерно высоких значений (например, при авариях), в качестве критерия безопасности техносферы принимают допустимую вероятность (риск) возникновения подобного события. [c.78]
Энергия воздействия раздражителя ограничена снизу порогом чувствительности, а сверху тоже есть ограничение, при этом рецепторы либо просто выключены, либо — это порог болевого ощущения. [c.92]
Передача информации об избыточной энергии поступает в анализирующий блок в ЦНС или периферическую нервную систему со скоростью 130 м/с. [c.92]
По спектральному составу, в зависимости от преобладания звуковой энергии в соответствующем диапазоне частот различают низко-, средне- и высокочастотные шумы, по временным характеристикам — постоянные и непостоянные (колеблющиеся, прерывистые и импульсные), по длительности действия—продолжительные и кратковременные, по спектру — широкополосные и тональные. [c.112]
Нормируемой характеристикой непостоянного шума является эквивалентный по энергии уровень звука в дБА. [c.113]
По физической сущности ультразвук (УЗ) не отличается от слышимого звука. Однако в отличие от шума УЗ характеризуется большими значениями интенсивности (до сотен ватт на квадратный метр). Он обладает значительно более короткими длинами волн, которые легче фокусировать и соответственно получать более узкое и направленное излучение, т. е. сосредотачивать всю энергию УЗ в нужном направлении и концентрировать в небольшом объеме. Частотный диапазон УЗ способствует большему затуханию колебаний из-за перехода энергии УЗ в теплоту. [c.113]
Спектр электромагнитных колебаний по частоте охватывает свыше 20 порядков, от 5 10 3 до Ю21 Гц. В зависимости от энергии фотонов его подразделяют на область неионизирующих и ионизирующих излучений. В гигиенической практике к неионизирующим излучениям относят также электрические и магнитные поля. [c.117]
Степень и характер воздействия ЭМИ радиочастот на организм определяются плотностью потока энергии, частотой излучения, продолжительностью воздействия, режимом облучения (непрерывный, прерывистый, импульсный), размером облучаемой поверхности, индивидуальными особенностями организма, наличием сопутствующих факторов (повышенная температура окружающего воздуха, свыше 28 °С, присутствие рентгеновского излучения). [c.119]
Биологические эффекты от воздействия ЭМИ могут проявляться в различной форме от незначительных сдвигов в некоторых системах организма до серьезных нарушений в целом. Следствием поглощения энергии ЭМИ организмом человека является тепловой эффект. Начиная с некоторого предела, организм человека не справляется с отводом теплоты от отдельных органов и температура их может повышаться. Воздействие ЭМИ особенно вредно для тканей со слаборазвитой сосудистой системой или недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте), а также возможны ожоги роговицы. Развитие катаракты является одним из немногих необратимых поражений, вызываемых ЭМИ радиочастот в диапазоне от 300 МГц до 300 ГГц при плотности потока энергии (ППЭ) свыше 10 мВт/см2. [c.119]
В сердине 70-х годов Япония, как и другие ведущие страны, познала галопирующую инфляцию, вызванную в значительной мере удорожанием исходных факторов производства, особенно сырья и энергии. И хотя этот период был непродолжительным и Японии было далеко до рекордов по приросту цен,тем не менее, многие элементы, связанные со спецификой методов побуждения к труду, оказались под угрозой. Среди них, например, метод долгосрочного стимулирования к труду, включающий создание жизненного цикла закрепляющую людей в одной компании систему пенсионных выплат упреждающий по отношению к научно-техническим преобразованиям характер профессиональной переподготовки кадров и использование ее в качестве антикризисного элемента регулирования занятости. [c.38]
В системе человек — среда обитания происходит непрерывный обмен потоками вещества, энергии и информации. Это происходит в соответствии с законом сохранения жизни Ю.Н. Куражковского Жизнь может существовать только в процессе движения через живое тело потоков вещества, энергии и информации . [c.5]
Потоки веществ, энергии и информации имеют естественную и антропогенную природу, они во многом зависят от масштабов преобразующей деятельности человека и от состояния среды обитания. [c.5]
Контроль освещенности. Измерение освещенности производится люксметром (рис. 2.10). Он представляет собой переносной прибор, состоящий из светочувствительного фотоэлемента, измерительного прибора и светопоглотительной насадки. Фотоэлемент — пластина, на поверхность которой нанесен светочувствительный слой, трансформирующий световую энергию в электрическую. При попадании на фотоэлемент светового потока возникает электрический сигнал, который [c.57]
Определенную опасность представляют радионуклиды, поступающие в окружающую среду от объектов ядерного топливного цикла (ЯТЦ). По сообщению Центра общественной информации по атомной энергии (1993, № 5) годовая коллективная эквивалентная доза облучения, получаемая населением вблизи АЭС, составляет 2,5 челвв/(ГВт год). Для сравнения, около ТЭС на мазуте —0,5 на газе —0,03 на угле —4. [c.69]
Критерии безопасности — максимально допустимые физические и химические загрязнения рабочей зоны, установленные нормативными документами в виде ПДКр3 и ПДУрз для рабочей зоны. Концентрации веществ и потоков энергии должны удовлетворять условиям (3.1) и (3.2). [c.76]
Возможность получать информацию о среде обитания, способность ориентироваться в пространстве и оценивать свойства бкружающей среды обеспечиваются анализаторами, которые являются специальными структурами организма для ввода информации из вйёшнего мира в мозг и ее переработки. Анализаторы — это совокупность нервных образований, воспринимающих внешние раздражители, преобразующих их энергию в нервный импульс возбуждения и передающих его в центральную нервную систему [12]. [c.83]
Датчиками анализаторов являются специальные окончания нервных волокон, называемые рецепторами, которые преобразуют внешнюю энергию различных видов раздражителей в особую активность нервной системы. Часть из них воспринимает изменения в окружающей среде (экстероцепторы), а другая часть—во внутренней среде нашего организма —интероцепторы. [c.83]
Обоняние—способность воспринимать запахи, осуществляется благодаря обонятельному анализатору, рецепторами которого являются нервные клетки, расположенные в слизистой оболочке носа. Эти клетки преобразуют энергию раздражителя в нервное возбуждение и передают его обонятельному центру. Для этого требуется непосредственный контакт рецептора с молекулой пахучего вещества. Эти молекулы, осаждаясь на небольшом участке мембраны обонятельного рецептора, вызывают местное изменение ее проницаемости для отдельных ионов. В результате развивается рецепторный потенциал — начальный этап нервного возбуждения. Человек обладает различной чувствительностью к пахучим веществам, к некоторым веществам она особенно высокая. Например, этилмеркаптан ощущается при его содержании в количестве, равном 0,00019 мг и 1 л воздуха. Полный диапазон воспринимаемых концентраций может охватывать 12 порядков. [c.87]
Вредное воздействие тяжелых металлов на организм человека известно каждому, это могут быть отравления свинцом, ртутью (экологическое заболевание Мина мата в 50-х годах в Японии), кадмием (заболевание итай-итай ), цинком (литейная лихорадка) и др. Однако почти все элементы таблицы Д.И. Менделеева, в том числе и тяжелые металлы, содержатся в очень малом количестве в нашем организме (в ферментах, гормонах, витаминах и др.) и не оказывают вредного влияния, а способствуют протеканию реакций обмена веществ и энергии, и жизни в целом. [c.98]