Корреляция для нелинейной регрессии R = 1 ——------= R е [0 1] [c.9]
Коэффициенты регрессии, как и коэффициенты корреляции, — случайные величины, зависящие от объема выборки. Поэтому для проверки надежности коэффициента регрессии выдвигается гипотеза о том, что коэффициент регрессии в генеральной совокупности равен нулю (нулевая гипотеза), т. е. связь, установленная по данным выборки, в генеральной совокупности отсутствует. Простейшая схема проверки этой гипотезы при линейной форме связи сводится к построению доверительного интервала для каждого коэффициента регрессии. Если граничные значения данного коэффициента регрессии в этом интервале имеют противоположные знаки, то принятая гипотеза подтверждается и тогда соответствующий этому параметру уравнения фактор исключается из модели. Для нелинейной формы связи имеются другие методы оценки значимости факторов [c.18]
Как видно из графика на рис. 6.3, имеются существенные колебания показателей объема продаж. Однако отмечается видимая тенденция к увеличению объема продаж, и соответствующий тренд можно выделить с помощью методов регрессии. Линия регрессии показана на графике (рис. 6.3). Из графика видно, что зависимость определена не столь четко, как в предыдущем примере. Так, коэффициент корреляции для этих данных будет значительно меньше по величине, и вообще может оказаться незначимым. Долговременный тренд может быть линейным или нелинейным. Эти данные трудно анализировать из-за сильных расхождений между соседними значениями. Часто, когда мы имеем дело с такого рода данными, необходимо сгладить колебания, и только потом можно сделать какой-либо имеющий смысл прогноз. Методы сглаживания данных временных рядов будут более подробно рассмотрены в последующих разделах. [c.188]
Предположим, что по данным табл. 2.4, где было найдено уравнение регрессии = 9,876 + 5,129 liu, была использована линейная функция ух = 9,28 + 1,777 х, коэффициент корреляции для которой составил 0,97416. Величина коэффициента корреляции оказалась меньше, чем величина индекса корреляции 0,99581. Оценим существенность различия данных показателей корреляции, используя приведенную формулу R2 — г2 = (0,99581)2 — — (0,97416)2 = 0,04265, т. е. применение нелинейной функции увеличивает долю объясненной вариации на 4,3 проц. пункта. [c.86]
Как было показано выше, ранжирование факторов, участвующих в множественной линейной регрессии, может быть проведено через стандартизованные коэффициенты регрессии (/ -коэффициенты). Эта же цель может быть достигнута с помощью частных коэффициентов корреляции — для линейных связей. При нелинейной взаимосвязи исследуемых признаков эту функцию выполняют частные индексы детерминации. Кроме того, частные показатели корреляции широко используются при решении проблемы отбора факторов целесообразность включения того или иного фактора в модель доказывается величиной показателя частной корреляции. [c.121]
В зависимости от формы связи случайных величин различают линейную и нелинейную регрессию и корреляцию. От того, сколько входных переменных (одна или более) используется для оценки выходной переменной, различают соответственно парную и множественную регрессию и корреляцию. [c.250]
Эти формулы справедливы только для линейной регрессии. Тем не менее их можно использовать для оценки качества генерализации, проводимой полностью обученной нейронной сетью (т.е. частным случаем нелинейной регрессии). При работе с нейронными сетями Сбудет означать общее количество весов связей в модели. Кроме того, убедитесь, что этими формулами используются простые корреляции если нейронная сеть или регрессионная программа возвращает квадраты корреляций, следует извлечь квадратный корень. [c.61]
В определенных обстоятельствах можно использовать коэффициент ранговой корреляции в качестве альтернативного показателя оценки зависимости между двумя наборами значений. Так, часто трудно получить точные показатели некоторых значений, и поэтому единственный надежный метод состоит в расстановке переменных по порядку, иначе говоря — в ранжировании значений. Коэффициент корреляции ранжированных значений называется коэффициентом ранговой корреляции, и он вычисляется по упрощенной формуле, которая приведена в этой главе. Значимая корреляция между двумя переменными подразумевает наличие линейной зависимости между ними. Методы регрессии можно использовать для определения уравнения наилучшей прямой линии, линии регрессии. Уравнение регрессии записывается в виде у = а + Ьх. Это уравнение можно использовать для оценки значения у при заданном значении х. Так, например, объем выручки от реализации можно рассчитать исходя из заданной суммы расходов на рекламу. Нелинейная зависимость между переменными должна быть преобразована в линейную, и только потом следует проводить базовый анализ регрессии. [c.128]
Парабола второй степени, как и полином более высокого порядка, при линеаризации принимает вид уравнения множественной регрессии. Если же нелинейное относительно объясняемой переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции, величина которого в этом случае совпадет с индексом корреляции Ryx = ryv где z — преобразованная величина [c.81]
При построении регрессивной модели для целевой функции Y на начальном этапе следует учитывать как можно большее число факторов, влияющих на изменение Y. В этом случае получаются достаточно сложные модели, особенно при использовании нелинейных форм. Часто эти модели можно значительно упростить, если в них выявить те факторы, которые незначительно влияют на функцию отклика или один из двух, имеющих сильную корреляцию между собой, и эти факторы не включать в уравнение регрессии. [c.121]
При расчете парной корреляции вначале производится отбор наиболее важных (существенных) факторов, влияющих на результативный показатель. Эти факторы помещаются в таблицу, в которой факторные признаки ранжируются в порядке возрастания или убывания. Далее данные из таблицы наносятся на плоскость координат - строится корреляционное поле. По форме поля или путем визуального анализа ранжированного ряда производится обоснование формы связи. При нелинейной связи вначале определяется теоретическое значение функции ух, для чего решается уравнение регрессии, описывающее связь между изучаемыми показателями. Затем рассчитывается корреляционное отношение. [c.15]
Не совпадают данные показатели и для уравнения регрессии в виде экспоненты так как при преобразовании в линейную форму рассчи гываслся чиненный коэффициент корреляции между д" и пу При н почыованни в преобразовании нелинейных соотношений в пшенную [c.382]
Если говорить о всем тестовом множестве, то обе сети дают лучшие результаты, чем регрессионный анализ. Это неудивительно, поскольку сети способны улавливать нелинейности, содержащиеся в данных. Далее, адаптивная сеть (WINNET) лучше оценивает будущие доходы, чем простая (ALLNET), потому что она может прогнозировать как положительные, так и отрицательные доходы. ALLNET и регрессия дают разные результаты из-за разного числа степеней свободы, и это привносит некоторые нюансы в расстановку победителей на пьедестале почета. Так, регрессия дает несколько лучшие, по сравнению с обеими сетями, результаты для первых трех торговых дней в смысле корреляции и MSE, но не по полученному чистому доходу. Нужно помнить при этом, что качество прогноза по методу регрессии падает после первых трех дней. [c.132]
В большей части этой книги я подчеркивал возможность крушения многих стандартных статистических критериев. Существует возможность отбросить или принять негодную информацию по той причине, что мы приспосабливаем нелинейные данные к линейной модели. Теория хаоса и фрактальная статистика задают некий каркас для оценки наших моделей, позволяя нам увидеть пределы линейного подхода. Мало получить хорошие i-статистики, корреляции или информационные отношения. Такие модели должны пробуждать интуицию и быть устойчивы к различным экономическим условиям. Можно придать значение факторам, которые имеют слабое влияние, если они дают осмысленные результаты в течение длительного времени. Можно отвергнуть статистически значимый результат, потому что его значимость зависит от верного предсказания одного большого нелинейного события. Д/5-анализ применяется к остаточной регрессии с целью выяснения, не остается ли нераскрытой в модели персистентная нелинейная структура. [c.254]
Как и в случае с регрессией, при разработке нейронной сети можно произвести оценку коррекции коэффициента корреляции (т.е. показателя, обратного генерализации). Фактически, нейронная сеть представляет собой систему уравнений множественной регрессии, хотя и нелинейных, и корреляция выходных значений сети может рассматриваться как множественный коэффициент корреляции. Множественная корреляция между выходными и целевыми значениями может быть скорректирована для прогнозирования поведения системынаданныхвне выборки. Такая скорректированная множественная корреляция должна постоянно использоваться для определения того, является ли эффективность нейронной сети [c.74]