Обобщенный мнк

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии Ь представляет собой взвешенную величину по отношению к обычному МНК с весами 1/К.  [c.172]


Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных х/К имеют при определении параметров рефессии относительно больший вес, чем с первоначальными переменными. Вместе с тем следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их рефессия имеет иной смысл, чем рефессия по исходным данным.  [c.173]

Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных  [c.175]

Итак, если остатки по исходному уравнению регрессии содержат автокорреляцию, то для оценки параметров уравнения используют обобщенный МНК. Для его реализации необходимо выполнять следующие условия.  [c.281]

Перечислите основные этапы обобщенного МНК.  [c.289]

Является ли правильным следующее доказательство несмещенности оценок обобщенного МНК с использованием оценки ковариационной матрицы  [c.314]


При несоблюдении основных предпосылок МНК приходится корректировать модель, изменяя ее спецификацию, добавлять (исключать) некоторые факторы, преобразовывать исходные данные для того, чтобы получить оценки коэффициентов регрессии, которые обладают свойством несмещенности, имеют меньшее значение дисперсии остатков и обеспечивают в связи с этим более эффективную статистическую проверку значимости параметров регрессии. Этой цели, как уже указывалось, служит и применение обобщенного метода наименьших квадратов, к рассмотрению которого мы и переходим в п. 3.11.  [c.169]

Как известно (см. задачу 3.26), для классической линейной модели у = Х/3 + е, Ее = 0, V(e) = а2 выполнено неравенство V(/3fi) V(/3), где (3 — МНК-оценка вектора /3, а /Зя — оценка, получаемая регрессией у на X при линейном ограничении Н/3 — г. Сохраняется ли это неравенство (для тех же оценок), если модель обобщенная, т. е. у = Х(3 + е, Ее = 0, V(e) = П  [c.166]

Оценка спроса производится на основании системы уравнений, из которой могут быть получены коэффициенты. Оценка системы независимых уравнений эквивалентна оценке МНК каждого уравнения в отдельности. Хотя полученная модель линейна по основным переменным, она нелинейна по оцениваемым параметрам. В 1954 г., когда оценивалась эта модель, такая нелинейность представляла существенную проблему. Для решения этой задачи был использован простой алгоритм, - заметим, что в том случае, если известны значения параметров у, то система оказывается линейной по параметрам /3, и наоборот. Таким образом, начиная с некоторых начальных значений этих параметром можно провести итерации вплоть до сходимости получаемых решений. Стоун применил эту модель к шести группам товарам, вновь исследовав данные по Великобритании с 1920 по 1938 г. Линейная система расходов обладает свойством пропорциональности ценовой эластичности компенсированного спроса и эластичности спроса по доходу. Это свойство, обнаруженное Стоуном, говорит о том, что линейная система расходов, по-видимому, является слишком ограничительной для обобщения на более сложные модели.  [c.112]


ПРИЛОЖЕНИЕ VI.2. ПРОСТОИ И ОБОБЩЕННЫЙ МЕТОД НАИМЕНЬШИХ КВАДРАТОВ МНК  [c.311]

Задача состоит в том, чтобы определить величину К,- и внести поправку в исходные переменные. С этой целью рекомендуется использовать обобщенный метод наименьших квадратов1, который эквивалентен обыкновенному МНК, примененному к преобразованным данным. Чтобы убедиться в необходимости использования обобщенного МНК, обычно не офаничиваются визуальной проверкой гетероскедастичности, а проводят ее эмпирическое подтверждение.  [c.164]

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Процесс перехода к относительным величинам может быть осложнен выдвижением иных гипотез о пропорциональности ошибок относительно включенных в модель факторов. Например, lno2,.. = Ino2 + Ь пх + v, т. е. рассматривается характер взаимосвязи trie2, от lnx. Использование той или иной гипотезы предполагает специальные исследования остаточных величин для соответствующих регрессионных моделей. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.  [c.175]

Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК - предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК. При построении уравнения множественной регрессии по временным рядам данных, помимо двух вышеназванных проблем, возникает также проблема муль-тиколлинеарности факторов, входящих в уравнение регрессии, в случае если эти факторы содержат тенденцию.  [c.265]

Мы предпочитаем оценки коэффициентов регрессии у г, которые эффективны и для которых можно проверить значимость. Оценки эффективны, если они являются наилучшими линейными несмещенными оценками (НЛНО). Термин наилучшие относится к свойству минимальности дисперсии. Оценки обобщенного МНК, будут такими оценками (НЛНО), но они требуют знания ковариационной матрицы ошибок наблюдений (2г и 2 в (2.8) и (2.17) в дополнении 2). К сожалению, нам ковариационная матрица неизвестна. Мы можем оценить элементы этой матрицы. (Ее диагональные элементы, т. е. дисперсии, оцениваются величинами sfr, обобщенный МНК для системы уравнений также требует оценивания ковариаций эти ковариации не оценивались в данном эксперименте, но они оценивались в дополнительном эксперименте.) Замена ковариационной матрицы в обобщенном методе ковариационной матрицей оценок позволяет получить несмещенные оценки 7о-> но эти оценки не лучше оценок (НЛНО). Мы не знаем, имеют ли они еще и меньшую дисперсию, чем обычные МНК-оценки (сравните с литературой)9. Мы знаем, что МНК-оценки обладают преимуществом простоты вычислений, поскольку при ортогональной матрице независимых переменных не нужна обратная матрица. Обращение матрицы с помощью ЭВМ может приводить к значительным ошибкам  [c.300]

Нетрудно понять содержательный смысл этого преобразования. Используя обычный метод наименьших квадратов, мы минимизируем сумму квадратов отклонений ip(b) = Y t=i(yt ] j=i fyxtj) , в которую, говоря нестрого, разные слагаемые дают разный статистический вклад из-за различных дисперсий, что в конечном итоге и приводит к неэффективности МНК-оценки. Взвешивая каждое наблюдение с помощью коэффициента 1/сГ(, мы устраняем такую неоднородность (заметим, что это означает, что мы придаем больший вес наблюдениям с меньшей дисперсией, т.е. более точным ). Поэтому часто обобщенный метод наименьших квадратов для системы с гетероскедастичностыо называют методом взвешенных наименьших квадратов. Можно непосредственно проверить (упражнение 6.1), что применение метода взвешенных наименьших квадратов приводит к уменьшению дисперсий оценок по сравнению с обычным методом наименьших квадратов.  [c.169]