Расчет параметров уравнения регрессии по упрощенным формулам (13) и (14) можно показать на примере валового товарооборота Коми управления Главнефтеснаба РСФСР. Исходные данные для расчета приведены в табл. 13. [c.38]
Исходные данные к расчету параметров уравнения регрессии [c.38]
Исходные данные для расчета параметров уравнения регрессии с фиктивными переменными по временному ряду потребления электроэнергии [c.254]
Вернемся к данным табл. 6.1. Построим уравнение регрессии, описывающее зависимость расходов на конечное потребление у, от совокупного доходах, и фактора времени. Для расчета параметров уравнения регрессии (6.8) воспользуемся обычным МНК. Система нормальных уравнений имеет вид [c.271]
От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму связи факторных и результативного признаков, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции остатков. [c.274]
Расчет параметров уравнения регрессии при наличии автокорреляции остатков показан в примере 6.5. [c.282]
Для получения новых оценок параметров, для которых не нарушается свойство эффективности, воспользуемся методом расчета параметров уравнения регрессии при наличии автокорреляции в остатках, изложенным в п. 6.4. [c.288]
Расчет параметров уравнения регрессии (7.15) обычным МНК для нашего примера приводит к следующим результатам [c.304]
Расчет параметров уравнения регрессии [c.128]
Для расчета параметров уравнения линейной регрессии строим расчетную таблицу (табл. 1.7). [c.17]
Расчет параметров уравнения линейной регрессии у=а+Ьх+е [c.8]
Расчет параметров уравнения множественной линейной регрессии [c.16]
Метод, используемый чаще других для нахождения параметров уравнения регрессии и известный как метод наименьших квадратов, дает наилучшие линейные несмещенные оценки. Он называется так потому, что при расчете параметров прямой линии, которая наиболее соответствует фактическим данным, с помощью этого метода стараются найти линию, минимизирующую сумму квадратов значений ошибок или расхождений между величинами Y, которые рассчитаны по уравнению прямой и обозначаются Y, и фактическими наблюдениями. Это показано на рис. 6.2. [c.265]
Если в рассматриваемых парных зависимостях все связи оказались прямолинейными, то и уравнение множественной регрессии будет также носить прямолинейный характер. Расчет параметров (коэффициентов регрессии) проводится методом парных корреляций. [c.126]
Метод, используемый для расчета параметров уравнения линейной регрессии, когда на основе поля корреляции минимизируются расстояния по вертикали всех точек поля от графика регрессии. [c.652]
Продолжим пример и определим прогнозные экспоненциально сглаженные значения временного ряда для 2000 и 2001 гг., используя метод регрессии. Расчет параметров регрессии а и b производится на основе системы уравнений, полученных способом наименьших квадратов [c.79]
Отвлечемся на время от рассматриваемого примера и найдем формулы расчета неизвестных параметров уравнения линейной регрессии. [c.53]
Решив данную систему, определяем параметры следующего уравнения регрессии, отражающего зависимость доли непродовольственных товаров в общем объеме покупок товаров семьей от дохода в расчете на одного члена семьи [c.204]
В табл. 12 приведены исходные данные о валовом товарообороте Московского управления Главнефтеснаба РСФСР за период с 1965 по 1972 г. и показан способ расчета параметров линейного уравнения регрессии. [c.37]
Как видно, сумма отклонений имеет положительный знак и, следовательно, теоретическая линия регрессии систематически занижает расчетные величины моделируемого признака по сравнению с фактическими. Однако расчет параметров логарифмической функции по критерию (3) с использованием обычного метода решения системы уравнений в частных производных невозможен. Продифференцируем следующую форму по "а и и [c.84]
Стороны, и средней маркой цемента и вводом добавок, с другой стороны, очень малы (0,0768 и —0,1531 соответственно). Низки и соответствующие коэффициенты регрессии. Следовательно, можно попытаться построить уравнение регрессии без учета этих параметров в расчете на несущественность снижения множественного корреляционного отношения. На эту же возможность указывает и граф связей (см. рис. 15). [c.141]
В отличие от уравнений регрессии, где связь между параметрами постулируют (предполагают), при футурологических расчетах на длительную перспективу исходят из необходимости построения моделей, основанных на предварительном тщательном изучении динамики различных параметров по данным точных наук или исходя из их уровня по последним достижениям развивающихся научных исследований в анализируемой области хозяйственной деятельности., Такие модели строят с помощью динамического или линейного программирования. Достоинством этих моделей является более широкий охват влияния многих нормативных параметров на какой-либо конечный результат. Типичным примером этого служит определение тенденций роста эффективности затрат по мере сокращения либо расширения рынка сбыта традиционных видов продукции ввиду изменения структуры потребления под влиянием научно-технического прогресса, в том числе новых технологий у традиционных покупателей. [c.173]
Для упрощения расчетов, связанных с определением параметров степенного уравнения регрессии, целесообразно оперировать не самими переменными уравнениями, а их логарифмами. Это позволяет перейти от степенных зависимостей к линейным, причем зависимости принимают вид [c.76]
Остановимся вначале на двухшаговом методе. Он применяется при наличии в оцениваемой модели лаговых переменных. Содержательный смысл двухшагового метода состоит в следующем. Как известно, МНК-оценки параметров уравнения равны b= (J X) 1 X" Y, но лаговые значения у, используемые как объясняющие переменные (в этой формуле они являются частью матрицы А), заранее неизвестны. Поэтому для того, чтобы воспользоваться этой формулой, сначала, на первом шаге, определяются недостающие значения объясняемых переменных. Это в данном случае делается путем расчета МНК-оценок, т.е. строится регрессия, в которой в роли объясняемых переменных выступают только имеющиеся в исходной информации. После этого, когда исходные эмпирические данные дополнены рассчитанными значениями и сформирован полный набор данных, можно приступать к оценке искомых параметров. [c.358]
Как показали результаты расчетов, значимые оценки параметров для ожиданий инвесторов получены практически для всех показателей концентрации. Есть значимые оценки параметров ожиданий и в уравнениях регрессии агрегированных показателей концентрации промышленного производства, и в уравнениях отраслевых показателей концентрации. Установлены значимые оценки влияния ожиданий и для абсолютных показателей концентрации, и для индикаторов относительной концентрации. Наконец, обнаружены значимые параметры и для позитивных ожиданий, и для негативных ожиданий инвесторов. Присутствуют значимые оценки параметров как в регрессии с переключением режимов ожиданий, так и в регрессии с переключением режимов ожиданий и дифференциацией по группам регионов (см. табл. 5.1 -5.2). [c.78]
Раскройте параметры однофакторной линейной регрессии (уравнения прямой) порядок расчета и интерпретацию. [c.83]
Вторым способом расчета требуемого мультипликатора является регрессионное уравнение. Напомним, что регрессия — это линейное уравнение, в котором правая часть объясняет изменение левой части. Например, если я напишу уравнение 5L = 0,55R, где R — выручка компании, a L — затраты на персонал, то его можно будет интерпретировать следующим образом рост выручки на 1% требует увеличения расходов на персонал на 0,5%. Искусство составления регрессионных уравнений состоит в том, чтобы правильно определить, от каких параметров зависит движение той или иной переменной, и представить в правой части уравнения такой набор независимых параметров, который в максимальной степени объяснял бы изменения переменной в левой части. [c.169]
Коэффициент корреляции, рассчитанный по уровням временных рядов, равен 0,997. Это говорит об очень тесной прямой связи между расходами на конечное потребление и среднедушевым доходом в США в период с 1960 по 1991 г. Однако при расчете параметров уравнения регрессии мы сталкиваемся с другой проблемой — автокорреляцией в остатках (фактическое значение критерия Дарбина — Уотсона составляет 0,521, что свидетельствует о наличии положительной автокорреляции в остатках). Поэтому найденные оценки параметров уравнения регрессии — 174,75 и 0,922 не являются эффективными ввиду нарушения предпосылок МНК в этом уравнении. [c.288]
Одним из возможных методов расчета параметров уравнения авторегрессии является метод инструментальных переменных. Сущность этого метода состоит в том, чтобы заменить переменную из правой части модели, для которой нарушаются предпосылки МНК, на новую переменную, включение которой в модель регрессии не приводит к нарушению его предпосылок. Применительно к моделям авторегрессии необходимо удалить из правой части модели переменнуюyt t. Искомая новая переменная, которая будет введена в модель вместо у, , должна иметь два свойства. Во-первых, она должна тесно коррелировать с у, х, во-вторых, она не должна коррелировать с остатками нл [c.325]
В скобках указаны стандартные ошибки параметров уравнения регрессии. Применение метода инструментальных переменных привело к статистической незначимости параметра С[ = 0,109 при переменной yf . Это произошло ввиду высокой мультиколлинеарности факторов, иyt v. Несмотря на то что результаты, полученные обычным МНК, на первый взгляд лучше, чем результаты применения метода инструментальных переменных, результатам обычного МНК вряд ли можно доверять вследствие нарушения в данной модели его предпосылок. Поскольку ни один из методов не привел к получению достоверных результатов расчетов параметров, следует перейти к получению оценок параметров данной модели авторегрессии методом максимального правдоподобия. [c.328]
Кроме того, установлены условия адекватного определения гидравлических сопротивлений при реализации в кольцевом пространстве переходного режима течения буровых растворов, обусловливающего уменьшение скольжения жидкости относительно стенок канала и приближение буровых растворов к стационарному реологическому состоянию принципы регулирования и общего расчета температур при циркуляции закономерности и критериальные уравнения регрессии для определения скорости осаждения выбуренной породы в буровых растворах при любых режимах обтекания. Разработаны и опробованы методические основы оптимизации режимных параметров турбинного бурения, предусматривающих идентификацию модели буримости в реальном масштабе времени, поиск оптимального решения на ЭВМ и переход от традиционного турбинного бурения в режиме максимальной механической скорости к бурению при осевых нагрузках, оптимизированных по критерию минимума стоимости метра проходки. [c.161]
Вышеназванное ни в коей мере не умаляет значимости экстраполяцион-ных методов в прогнозировании. Как и любые методы, их надо уметь использовать. Прежде всего экстраполяционные методы следует применять для относительно краткосрочного прогнозирования развития достаточно стабильных, хорошо изученных процессов. Прогнозный период времени не должен превышать 25—30% от исходной временной базы. При использовании уравнений регрессии прогнозные расчеты следует проводить для оптимистических и пессимистических оценок исходных параметров (независимых переменных), получая таким образом оптимистические и пессимистические оценки прогнозируемого параметра. Реальная прогнозная оценка должна находиться между ними. [c.209]
Варианты прогноза формируются путем изменения экзогенных переменных модели В, L, Км, аэ Jn, J3, От, Ооп. Расчеты можно проводить на любой год прогнозного периода для этого надо иметь сценарий погодовой динамики экзогенных переменных. Обращаем внимание на то, что знаки перед коэффициентами в уравнениях регрессии должны отвечать экономическому смыслу взаимосвязей. Поэтому перед коэффициентом загрузки оборудования в уравнении (20.3) и индексом роста цен на электроэнергию в уравнении (20.5) стоит знак минус 1. Параметр линейного тренда t в уравнениях (20.5) и (20.6) интегрирует факторы, также влияющие на электропотребление, но не представленные в явном виде в данных зависимостях. [c.409]
Необходимость применения многофакторного корреляционного анализа. Этапы многофакторного корреляционного анализа. Правила отбора факторов для корреляционной модели. Обоснование необходимого объема выборки данных для корреляционного анализа. Сбор и статистическая оценка исходной информации. Способы обоснования уравнения связи. Основные показатели связи в корреляционном анализе и их интерпретация. Сущность парных (общих), частных и множественных коэффициентов корреляции и детерминации. Оценка значимости коэффициентов корреляции. Порядок расчета уравнения множественной регрессии шаговым способом. Интерпретация его параметров. Назначение коэффициентов эластичности и стандартизированных бетта-коэф-фициентов. [c.138]
Линейное уравнение множественной регрессии у от х и хг имеет вид у = а+Ь л 1+Й5Х2. Для расчета его параметров применим метод стандартизации переменных и построим искомое уравнение в стандартизованном масштабе ty = j tX + J2 x2 Расчет Р-коэффициентов выполним по формулам [c.57]
Для вычисления значения параметров а и Ъ применяют стандартную процедуру линейной регрессии, В габл. 8,5 показаны соответствующие расчеты для примера с затратами на строительство автомобильных дорог. Значение прогноза исходной зависимой переменной находится с помощью уравнения (8.9) (рис. 8.4). Прогноз затрат на 1978 г. [c.94]
Смотреть страницы где упоминается термин Расчет параметров уравнения регрессии
: [c.84] [c.97] [c.69] [c.49] [c.64]Смотреть главы в:
Статистическая оценка связей экономических показателей -> Расчет параметров уравнения регрессии