Р = (Ро Pi. .. Рр) — матрица-столбец, или вектор, параметров размера (р+1) е = (EI EI— л) — матрица-столбец, или вектор, возмущений (случайных ошибок, остатков) размера п. [c.83]
При моделировании реальных экономических процессов мы нередко сталкиваемся с ситуациями, в которых условия классической линейной модели регрессии оказываются нарушенными. В частности, могут не выполняться предпосылки 3 и 4 регрессионного анализа (см. (3.24) и (3.25)) о том, что случайные возмущения (ошибки) модели имеют постоянную дисперсию и не коррелированы между собой. Для линейной множественной модели эти предпосылки означают (см. 4.2), что ковариационная матрица вектора возмущений (ошибок) е имеет вид [c.150]
Здесь матрица А размера пХп определяет характеристики объекта, подлежащие определению x(t) — наблюдаемый со случайной погрешностью вектор координат состояния объекта w(t) — случайные возмущения. Статистические характеристики ошибок наблюдения и случайных возмущений w(t) предполагаются известными. [c.47]
Общая математическая модель линейной регрессии имеет вид Y = X + е, где Y — (п X 1)-вектор наблюдений, X = (Xi... Хп) — (п X р)-матрица плана экспериментов, Xk — регрессор й-го наблюдения, в — (р X 1) -вектор неизвестных параметров, s — (п X 1) — вектор случайных ошибок. В классической постановке задачи линейной регрессии предполагается, что г N (0, сг21п), где 1П — (п X п)-единичная матрица. Оценки по методу наименьших квадратов (мнк-оценки) отыскиваются из условия минимизации по 0 величины Y — Х0 . Когда Х Х =т О (ранг X равен р), [c.249]
В некоторых случаях условия 4), 5) достаточно легко проверяются. Пусть, например, строки матрицы X независимы и одинаково распределены (как случайные f -мерные векторы), вектор ошибок состоит из независимых и одинаково распределенных компонент, Ее = О, X и е независимы. Иными словами, значения объясняющих переменных в каждом наблюдении выбираются из одной и той же генеральной совокупности, причем наблюдения между собой независимы и не зависят от случайных ошибок. Обозначим а = E(xtjX(j), i,j — l,...,k (эти числа не зависят от i, поскольку строки матрицы X одинаково распределены), и пусть А — (% ). Тогда по закону больших чисел plimn 00(l/n)X. X" = А, и если распределение каждой [c.152]
Если i -e стохастическое уравнение структурной формы идентифицируемо точно, то параметры этого уравнения (коэффициенты уравнения и дисперсия случайной ошибки) восстанавливаются по параметрам приведенной системы однозначно. Поэтому для оценивания параметров такого уравнения достаточно оценить методом наименьших квадратов коэффициенты каждого из уравнений приведенной формы методом наименьших квадратов (отдельно для каждого уравнения) и получить оценку ковариационной матрицы О ошибок в приведенной форме, после чего воспользоваться соотношениями ПГ = В и = ГГОГ, подставляя в них вместо П оцененную матрицу коэффициентов приведенной формы П и оцененную ковариационную матрицу ошибок в приведенной форме А. Такая процедура называется [c.158]
А - (п+1)Х магрица параметров регрессии при независимых факторах - Nxk-матрица значений случайных ошибок по наблюдениям [c.47]
Используя полученные из АГК числовые характеристики объектов, мы провели стандартный линейный множественный дискрими-нантный анализ с одинаковыми (равными 33%) априорными вероятностями принадлежности элемента. группам. Правильно были классифицированы 41% от общего числа случаев, и это несколько лучше 33-процентной точности, которая получилась бы при случайном отнесении объекта к той или иной группе. Табл. 8.6 ниже— это таблица неправильных классификаций, которая также называется матрицей ошибок. [c.179]
В задачах линейной фильтрации и прогноза случайные процессы L, и g связаны соотношением вида (5.1). Взаимнооднозначное соответствие между i Li и P(ii, т)еЯ (см. теорему 2.1.) позволяет переформулировать задачи I и II и общую модель (5.2) — (5.4) в терминах функций веса. Критерий качества R прогноза — функция первых и вторых моментов ошибок и матрицы k искусственного рассеивания — [c.323]
Метод сопряженных градиентов использовался автором не только в серийных расчетах задач оптимального управления (в качестве одного из блоков решения задачи линейного или квадратичного программирования), но и в методических расчетах в условиях сравнительно высокой размерности. В частности, в 48 представлены результаты решения задачи линейного программирования итерационным методом, включающим и метод сопряженных градиентов. Видно, что сходимость метода не соответствует теоретическим предсказаниям, что приводит к определенному (и заметному) перерасходу машинного времени. Были проведены и специальные эксперименты по минимизации формы (Вх, Вх) (G=B B) со случайной матрицей В размером 100x100. Использовалась схема типа III. Алгоритм не давал нужной точности после 300 — 400 шагов. Для уменьшения влияния ошибок округления была применена комбинация схем II и III четыре итерации проводились с вычислением В по схеме III, а каждая пятая — по более громоздкой формуле схемы II. Это привело к улучшению сходимости (выигрыш можно оценить числом л 2), но проблемы не решило. [c.477]