Индекс детерминации

Если коэффициент корреляции возвести в квадрат, то получим коэффициент (индекс) детерминации, который показывает, чему равна доля влияния изучаемого фактора на совокупный показатель.  [c.51]


При значениях тесноты связи меньше 0,7 величина индекса детерминации d всегда будет меньше 50%. Это означает, что на долю вариации факторного признака х приходится меньшая доля по сравнению с другими признаками, влияющими на изменение результативного показателя. Синтезированные при таких условиях математические модели связи практического значения не имеют.  [c.51]

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.  [c.6]

Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R  [c.7]

Качество построенной модели в целом оценивает коэффициент (индекс) детерминации. Коэффициент множественной детерминации рассчитывается как квадрат индекса множественной корреляции  [c.52]


Поскольку в расчете индекса корреляции используется соотношение факторной и общей суммы квадратов отклонений, то R2 имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину Л2 для нелинейных связей называют индексом детерминации.  [c.85]

Индекс детерминации используется для проверки существенности в целом уравнения нелинейной регрессии по F-критерию Фишера  [c.85]

Индекс детерминации R2n можно сравнивать с коэффициентом детерминации г2 для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина коэффициента детерминации г2 меньше индекса детерминации R2 , Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию. Практически если величина (Л2 — г2 ) не превышает 0,1, то предположение о линейной форме связи считается оправданным. В противном случае проводится оценка существенности различия R2 , вычисленных по одним и тем же исходным данным, через /-критерий Стьюдента  [c.86]

Оценив параметры этого уравнения по МНК, можно найти теоретические значения объема продукции г и соответственно остаточную сумму квадратов (/ — Р)2, которая используется в расчете индекса детерминации (корреляции)  [c.118]

Поскольку Х0> —у) I (у —у) = 1 — R2, то величину скорректированного индекса детерминации можно представить в виде  [c.119]

Как было показано выше, ранжирование факторов, участвующих в множественной линейной регрессии, может быть проведено через стандартизованные коэффициенты регрессии (/ -коэффициенты). Эта же цель может быть достигнута с помощью частных коэффициентов корреляции — для линейных связей. При нелинейной взаимосвязи исследуемых признаков эту функцию выполняют частные индексы детерминации. Кроме того, частные показатели корреляции широко используются при решении проблемы отбора факторов целесообразность включения того или иного фактора в модель доказывается величиной показателя частной корреляции.  [c.121]


Индекс детерминации для данной модели составит  [c.152]

Коэффициент (индекс) детерминации га (т. е. квадрат коэффициента корреляции) определяется как доля общей дисперсии, объясняемой регрессией, т. е.  [c.82]

Относительные показатели, характеризующие взаимосвязь признаков в совокупности явлений, а также взаимосвязь результативных признаков-следствий с факторными признаками-причинами, например, связь уровня душевого дохода с размером потребления мяса или фруктов на одного человека связь дозы удобрений с урожайностью картофеля и т.п. К таким показателям относятся рассматриваемые в главе 8 коэффициенты корреляции, эластичности, детерминации, а также в главе 10 аналитические индексы. Относительные показатели взаимосвязи могут быть как отвлеченными, так и именованными числами.  [c.48]

Метод регрессии предполагает анализ взаимосвязи случайных величин (признаков), среди которых выделяется один результативный признак, зависящий от прочих независимых между собой факторов. Оценка связи выполняется с помощью коэффициента детерминации (индекса корреляции).  [c.467]

Коэффициент детерминации — R2 вычисляется как отношение факторной дисперсии к общей дисперсии, индекс корреляции — R является корнем квадратным из коэффициента детерминации. Для оценки значимости индекса R рассчитывается показатель  [c.468]

Коэффициент детерминации - квадрат коэффициента или индекса корреляции.  [c.7]

Тот же результат даст и индекс множественной детерминации, определенный через соотношение остаточной и общей дисперсии результативного признака.  [c.117]

Формула скорректированного индекса множественной детерминации имеет вид  [c.119]

В статистических пакетах прикладных программ в процедуре множественной регрессии обычно приводится скорректированный коэффициент (индекс) множественной корреляции (детерминации). Величина коэффициента множественной детерминации используется для оценки качества регрессионной модели. Низкое значение коэффициента (индекса) множественной корреляции означает, что в регрессионную модель не включены существенные факторы — с одной стороны, а с другой стороны — рассматриваемая форма связи не отражает реальные соотношения между переменными, включенными в модель. Требуются дальнейшие исследования по улучшению качества модели и увеличению ее практической значимости.  [c.120]

Индекс множественной детерминации R2 = 0,966  [c.19]

Оцените тесноту связи при помощи коэффициента корреляции, индекса корреляции, коэффициента детерминации.  [c.8]

Рассчитайте коэффициент детерминации и скорректированный индекс множественной корреляции. Охарактеризуйте тесноту связи рассматриваемого набора факторов с исследуемым результативным признаком.  [c.11]

По своему аналитическому выражению коэффициент надежности (или надежность) является квадратом коэффициента корреляции (т.е. коэффициентом детерминации) результатов измерения с истинными результатами, а его квадратный корень (т.е. коэффициент корреляции R) принято называть индексом надежности.  [c.79]

Портфельные менеджеры используют как традиционный подход, так и подход современной портфельной теории, каждый из которых акцентирует внимание на преимуществах снижения риска за счет диверсификации. Традиционный подход основан на подборе акций и облигаций хорошо известных компаний различных отраслей экономики. Современная портфельная теория (СПТ) использует такие статистические понятия, как дисперсия, корреляция и коэффициент детерминации, для измерения риска и потенциала диверсификации альтернативных инвестиционных инструментов. Отрицательно коррелированные вложения обеспечивают максимальный эффект диверсификации. Недиверсифицируемый риск ценной бумаги или портфеля измеряется с помощью фактора "бета", описанного в главе 5. Фактор "бета" измеряет реакцию ценной бумаги или портфеля на изменения рыночного индекса, например "Стэндард энд пур з 500". Чем выше коэффициент детерминации, который измеряет объясняющую способность регрессионного уравнения, тем надежнее оценки фактора "бета". Коэффициент детерминации фактора "бета" выше для портфелей, чем для отдельных ценных бумаг, в результате чего портфельные менеджеры больше доверяют портфельным пока-  [c.178]

Приступая к статистическому исследованию зависимостей между анализируемыми переменными, исследователь должен в первую очередь установить сам факт наличия статистических связей и попытаться измерить степень их тесноты. В качестве основных измерителей степени-тесноты связей между количественными переменными в практике статистических исследований используются индекс корреляции, корреляционное отношение, парные, частные и множественные коэффициенты корреляции, коэффициент детерминации.  [c.97]

Пусть исследуется вопрос о среднем спросе на кофе AQ (в граммах на одного человека). В качестве объясняющих переменных предполагается использовать следующие переменные P - индекс цен на кофе, In YD - логарифм от реального среднедушевого дохода, POP - численность населения, РТ -индекс цен на чай. Можно ли априори предвидеть, будут ли в этом случае значимыми все t-статистики и будет ли высоким коэффициент детерминации R Какими будут ваши предложения по уточнению состава объясняющих переменных.  [c.256]

Индекс детерминации для нелинейных по оцениваемым параметрам функций в некоторых работах по эконометрике принято называть квази-/ 2 . Для его определения по функциям, использующим логарифмические преобразования (степенная, экс понента), необходимо сначала найти теоретические значения пу (в нашем примере In/ ), затем трансформировать их через антилогарифмы антилогарифм (1пу ) = у, т. е. найти теоретические значения результативного признака и далее определять индекс детерминации как квази- R , пользуясь формулой  [c.118]

Коэффициент детерминации ( oeffi ient of determination) представляет собой пропорцию, в которой изменение доходности акций компании WM связано с изменением доходности рыночного индекса. Другими словами, он показывает, в какой степени колебания доходности WM можно отнести за счет колебаний доходности рыночного индекса.  [c.512]

Так как коэффициент неопределенности ( oeffi ient of nondetermination) равен I минус коэффициент детерминации, то он представляет собой пропорцию, в которой изменение доходности акций компании WM не связано с изменением доходности рыночного индекса. Так, 73% величины колебания доходности акций компании WM нельзя приписать колебаниям доходности рыночного индекса.  [c.513]

Значение Л-квадрат (R-squared) аналогично равно коэффициенту детерминации, приведенному в табл. 17.228. Так, 37% величины колебаний цен акций компании Ask omputer может быть отнесено за счет колебаний рыночного индекса, рассматриваемого за 60-месячный период.  [c.514]

Скорректированный индекс множественной детерминации содержит поправку на число степеней свободы и рассчитьгоается по  [c.53]

Следовательно, оценка МНК есть такая, при которой коэффициенты уравнения регрессии равны В = (XTXJ 1XTY (индекс —1 означает обратную матрицу). Коэффициент детерминации (скорректированный) равен  [c.81]

Коэффициент детерминации будет принимать значения от нуля, когда X не влияет на Y, до единицы, когда изменение Y объясняется изменением X. Значение Л2 для рефессии данных по индексам FTSE 100 и S P 500 из табл. 6.1 составляет 0,8548. Обычная интерпретация коэффициента детерминации такова число (значение), скажем Л2 = 0,8548, умножается на 100 и выражается как процентная доля вариации Y, которая объясняется вариацией X. Таким образом, в этом примере 85,48% изменения Y (индекс FTSE 100) объясняются изменением X (индекс S P 500). Доверяете вы или нет тому, что рынок акций США имеет сильное определяющее влияние на рынок Великобритании, будет зависеть от того, насколько основательно вы исследовали конкурирующие теории. Вспомните, что данная регрессионная модель — это только математическое выражение той одной гипотезы. которая проверялась.  [c.279]

Таким образом, введенный с помощью (1.6) индекс корреляции /л. между результи-рующим показателем г и объясняющими переменными формально определен для любой двумерной системы наблюдений. Квадрат его величины (I -i) показывает, какая доля дисперсии исследуемого результирующего показателя rj определяется (детерминируется) изменчивостью (дисперсией) соответствующей функции регрессии / от аргумента , поэтому часто называется коэффициентом детерминации. Соответственно оставшаяся доля дисперсии к (т. е. 1 — n-l) объясняется воздействием неконтролируемой случайной остаточной компоненты ( помехи ), а следовательно, определяет ту верхнюю границу точности, с которой мы сможем восстанавливать (предсказывать) значения rj по заданным значениям объясняющих переменных .  [c.61]