Многомерная линейная регрессионная модель

Многомерная линейная регрессионная модель 399  [c.399]

МНОГОМЕРНАЯ ЛИНЕЙНАЯ РЕГРЕССИОННАЯ МОДЕЛЬ  [c.399]


Многомерная линейная регрессионная модель 401  [c.401]

Главы 2-4 содержат классическую теорию линейных регрессионных моделей. Этот материал является ядром эконометрики, и студенты должны хорошо освоить его перед тем, как перейти к изучению остальных частей книги. В главе 2 рассматривается простейшая модель с двумя регрессорами, глава 3 посвящена многомерным моделям. В определенном смысле глава 2 избыточна, однако с педагогической точки зрения крайне полезно изучить сначала регрессионные модели с двумя переменными. Тогда, например, можно обойтись без матричной алгебры, в двумерном случае легче также понять графическую интерпретацию регрессии. Глава 4 содержит несколько дополнительных разделов (проблема мультиколлинеарности, фиктивные переменные, спецификация модели), однако ее материал также можно отнести к стандартным основам эконометрики.  [c.15]


Пусть выполняется условие нормальной линейной регрессионной модели ЛГ(0,<72/П), т.е. е — многомерная нормально распределенная случайная величина, или, что то же самое, Yt имеют совместное нормальное распределение. Тогда МНК-оценки коэффициентов регрессии a, b также имеют совместное нормальное распределение, так как они являются линейными функциями (2.4а), (2.46) от Yt  [c.46]

Покажем, что в случае нормальной линейной регрессионной модели, т. е. когда е — многомерная нормально распределенная случайная величина, выполняется  [c.47]

В учебном пособии представлены следующие разделы одноименной учебной дисциплины линейные регрессионные модели, балансовые модели, модели сетевого планирования и управления, модели статистического многомерного анализа, модели линейного программирования.  [c.4]

Использование традиционных регрессионных моделей (линейных при многомерном X и параболических в одномерном случае) в применении к относительно большим подобластям изменения регрессора позволяет сочетать простоту расчетов, свойственную классическим моделям регрессии, с эффективным использованием выборочной информации. Эти методы получили название локально параметрических.  [c.335]

Интерпретация параметров интенсивности влияния факторов fli в многомерных регрессионных моделях определяется наличием и теснотой внутренних связей системы факторных показателей. Хотя наиболее распространенный метод оценки коэффициентов регрессииметод наименьших квадратов — предполагает статистическую независимость факторных показателей, в практических попытках моделирования хозяйственной деятельности данное требование трудно выполнять и поэтому в общем случае им пренебрегают. Изучаются лишь пути устранения явных искажений, когда направление влияния фактора в модели прямо противоречит сущности моделируемого явления или теоретическим представлениям о сущности моделируемой связи. Такое положение создается из-за наличия тесной связи между факторами (какой-нибудь фактор выражается линейной комбинацией других факторов, включенных в мо-  [c.120]


Сравнивая два способа решения систем (8.60) (непосредственно с матрицей X и с переходом к системе нормальных уравнений), можно сделать вывод, что несогласованные системы (8.60), как правило, лучше решать, используя переход к нормальной системе уравнений. В статистической практике несогласованные системы возникают, когда матрица данных X переопределена, т. е. число объектов (столбцов) в ней больше числа переменных (строк), и при этом линейные уравнения, входящие в систему (8.60), не могут выполняться точно. Но превышение числа объектов над числом переменных — типичная ситуация в регрессионном анализе. Второе условие несогласованности также часто выполняется, так как обычно системы линейных уравнений используются для оценки параметров линейных моделей типа (8.1), являющихся лишь приближением действительных соотношений между переменными (мерой этого приближения как раз и является дисперсия случайной компоненты е). Для обоснования перехода к нормальной системе уравнений существенно и то, что матрица Х Х тесно связана с ковариационной матрицей, которая является исходным объектом для различных видов многомерного анализа (главных компонент, факторного анализа и т. д.).  [c.275]

Естественным обобщением линейной регрессионной модели с двумя переменными (см. п. 2.3) является многомерная регрессионная модель (multiple regression model), или модель множественной регрессии  [c.67]

Рассмотрим пример применения сетей к анализу классического временного ряда— ряда данных о пятнах на Солнце. Регулярные ежегодные записи этого явления ведутся с 1700 года. Ряд много раз анализировался в статистической литературе, и выяснилось, что он не является ни стационарным, ни линейным, ни гауссовым. Были испробованы различные одномерные методы моделирования временных рядов. Габр и Рао [119] применяли авторегрессионную модель 9-го порядка (с 4 ненулевыми коэффициентами) и билинейную модель. Льюис и Стивене [179] разработали модель на основе метода многомерных адаптивных регрессионных сплайнов (MARS), а Пристли [221] исследовал модель TAR. В последнее время несколько групп исследователей предприняли попытки проделать анализ ряда с помощью нейронно-сетевого подхода (см. [275], [170], [84]). Результаты, полученные различными методами, собраны в табл. 2.2.  [c.67]

Шестая часть посвящена оценкам максимального правдоподобия, которые, конечно, являются идеальным объектом для демонстрации мощи развиваемой техники. В первых трех главах исследуется несколько моделей, среди которых есть многомерное нормальное распределение, модель с ошибками в переменных и нелинейная регрессионная модель. Рассматриваются методы работы с симметрией и положительной определенностью, специальное внимание уделено информационной матрице. Вторая глава этой части содержит обсуждение одновременных уравнений при условии нормальности ошибок. В ней рассматриваются проблемы оценивания и идентифицируемости параметров при различных (не)линейных ограничениях на параметры. В этой части рассматривается также метод максимального правдоподобия с полной информацией (FIML) и метод максимального правдоподобия с ограниченной информацией (LIML), особое внимание уделено выводу асимптотических ковариационных матриц. Последняя глава посвящена различным проблемам и методам психометрики, в том числе методу главных компонент, мультимодальному компо-  [c.16]

Наиболее широко в перечне методов маркетингового анализа представлена статистика. Методология маркетингового анализа использует следующие статистические методы абсолютные, средние, относительные величины, динамические ряды и ряды распределения, группировки, индексы, вариационный и дисперсионный анализ, корреляционно-регрессионный и многомерный анализ, графический метод, трендовые модели, методы экспертных оценок. Эконометрика в маркетинге представлена методами линейного и нелинейного моделирования, а также динамического программирования, моделями, базирующимися на теории массового обслуживания (теория очередей) и теории принятия решений (теория риска), имитационными моделями. Самостоятельное значение придается логистическим моделям управления г отоками товаров и денег и оптимизации товарных запасов. В маркетинговом анализе широко используются квалиметрические методы, а также методы социометрии. Стратегические матрицы (решетки), используемые в маркетинговом планировании для целей разработки оптимальной стратегии, могут найти применение и в маркетинговом анализе - для определения рейтинга фирмы и ее позиции на рынке, для прогноза риска и т.п. Немаловажное значение придается также неформальному описательному и качественному анализу, сценариям развития и т.п.  [c.100]

Особенность математических методов, используемых для реше-, ния задач текущего планирования, заключается в том, что анализ. деятельности объектов нефтебазового хозяйства проводится с применением методов многомерного и корреляционно-регрессионного анализа и методов теории вероятностей, а выбор оптимальной схемы внутриуправленческих перевозок — путем построения модели многопродуктовой, многоэтапной транспортной задачи линейного программирования с учетом внутригодовой динамики.  [c.19]

Для описания многомерного распределения предлагается распределение части координат (Х(1)) аппроксимировать стандартной нормальной моделью или считать таким, как оно получилось в выборке, а распределение остальных координат (Х<2)) заменить на надлежащим образом подобранный (р—5)-мерный нормальный закон со средним, линейно зависящим от Х(1), и ковариационной матрицей V условного распределения Х(2> при фиксированном значении Х(1), от Х(1) не зависящей. Но это и есть модель линейной многомерной регрессии, в которой Х(1)играет роль предикторной точки-наблю-дений (X), Х(2> — роль многомерного результирующего показателя (У), Е (Х(2) Х(1>) — многомерная регрессия Х(2> на Х(1), а Х(2) — Е(Х(2) Х >) — регрессионные остатки с ковариационной матрицей V.  [c.234]

Эконометрические модели на основе линейного и многомерного дис-криминантного анализа, регрессионного анализа (в частности, логит-и пробит-модели, используемые для прогнозирования вероятности дефолта как функции от нескольких независимых переменных), анализа выживаемости, позволяющего получать оценки вероятности наступления события (например, смерти, дефолта), и др.  [c.339]

Смотреть страницы где упоминается термин Многомерная линейная регрессионная модель

: [c.414]    [c.461]