Кроме вышесказанного для расчета специфицированной нормы производственного запаса необходимо в рассматриваемом случае дополнительно использовать плотность распределения случайной двухмерной величины нормируемой марки материального ресурса у предприятия-потребителя. Ее следует рассчитать по данным отчетного года — QU (плотности условных распределений объемов поставок Q = qi при постоянных значениях суммарных объемов суточных отпусков за интервал поставки U = ит, где т сохраняет одно и то же значение при всех возможных значениях Q)1. Здесь суммарный объем суточных отпусков за интервал поставки является факторным признаком, а объем поставки (зависимый признак) — результативным. Между факторным и результативным признаками проявляется корреляционная связь. При такой связи на величину результативного признака оказывают влияние, помимо факторного, множество других признаков, действующих в различных направлениях одновременно или последовательно. При этом сами вариации суточных объемов отпусков и интервалов поставок можно рассматривать как случайные независимые события, а их значения — как случайные независимые величины. В то время как их произведение (суммарный объем отпуска за интервал поставки) в рассматриваемом случае коррелирует с объемом поставки. Доказательством того, что вышеуказанные факторы (объемы суточных отпусков и интервалы поставки) случайные независимые величины, является количественное несоответствие значений факторов — много значений суточных объемов отпуска и значительно меньше интервалов поставок. Часто корреляционную связь называют неполной статистической или частичной в отличие от функциональной связи, которая выражается в том, что при определенном значении одной переменной величины (независимая переменная — аргумент) другая переменная величина (зависимая переменная — функция) принимает строго определенное значение. Корреляционную связь можно выявить только в виде общей тенденции при массовом сопоставлении фактов. При этом каждому значению факторного признака будет соответствовать не одно определенное значение результативного признака, а их совокупность. В этом выражается имеющаяся свободная связь между объемом поставки и суммарным объемом суточных отпусков в нем. Плотность распределения случайной двухмерной величины (Qf/), отражающая количественно имеющуюся связь между факторными признаками, выглядит следующим образом [c.363]
Плотность распределения двухмерной случайной величины QU — плотность условного распределения вариаций объемов поставок Q = при постоянных значениях суммарных объемов суточных отпусков за интервал поставки U = ит, где т сохраняет одно и то же значение при всех возможных значениях Q в том виде, как показано в формуле (6.85), приведенной в разд. 6.5.1. Причем значения ит в этой формуле будут равны соответственно следующим выражениям [c.370]
Постановки многоэтапных задач и методы их решения существенным образом зависят от информационной структуры моделей — от информации о значениях параметров условий задачи, которой располагают к моменту выбора очередного решения. В задачах с безусловными ограничениями решение определяется на основе совместного распределения случайных параметров условий всех этапов. Между многоэтапными задачами с безусловными и условными ограничениями установлено определенное соответствие. В задачах с условными ограничениями обычно различают два крайних случая, отвечающих двум важным для приложений информационным структурам. В первом случае к моменту выбора решения предполагаются известными только реализованные значения параметров условий предыдущих этапов. Решение принимается до наблюдения параметров условий текущего этапа. Во- втором случае к моменту выбора решения имеется вся информация о значениях параметров условий вплоть до параметров текущего этапа.-Неизвестны, естественно, лишь значения случайных параметров последующих этапов. [c.14]
В настоящей главе под планом и оптимальным планом задачи подразумевается решающее распределение — безусловное или условное (в зависимости от постановки задачи) распределение компонент вектора х. Как и ранее, при рассмотрении решающих правил, целесообразно исследовать два крайних случая — априорные и апостериорные решающие распределения, отвечающие априорным и апостериорным решающим правилам при решении задачи в чистых стратегиях. Компоненты решения в априорных решающих распределениях, как и составляющие априорных решающих правил, не зависят от реализаций случайных значений параметров условий задачи. Составляющие апостериорных решающих распределений являются условными распределениями при фиксированных реализациях случайных исходных данных. Как и в предыдущей главе, естественно рассматривать случаи, когда функциональный вид решающего распределения задан и определению подлежат лишь параметры распределения, а также общий случай, когда вид распределения заранее не фиксирован. [c.134]
В экономич. исследованиях часто прибегают к использованию марковских и стационарных случайных процессов. Случайный процесс наз. марковским, если для любых двух моментов времени и функция распределения случайных величин (ti-if.1) полностью определяется значением ( ), т. е. [c.110]
При a = 1 имеем tp = a - 1= 0, и приращения A Xt ряда Xt образуют процесс белого шума, так что условное математическое ожидание A Xt при фиксированном (наблюдаемом) значении Xt- = xt- не зависит от xt- и равно 0. Соответственно, при фиксированном (наблюдаемом) значении Xt- = xt- , условное математическое ожидание случайной величины Xt = AXt + Xt- равно xt- . Если распределение случайной величины st симметрично относительно нуля (а именно таково и гауссовское распределение, которое использовалось нами при моделировании), то [c.101]
В действительности имеются два возможных подхода. Один заключается в том, что для нас несущественно, как были получены данные для X и У, если удовлетворяются предположения (2.5) об условном распределении YI приданных X,. Тогда наши вероятностные утверждения о доверительных интервалах и о силе критериев также имеют место, только они являются утверждениями условно вероятностными по отношению к данным значениям X. Эти условные утверждения справедливы, если выполняются необходимые условия, однако сами условия могут оказаться либо недостаточно интересными, либо неадекватными изучаемой экономической или социальной ситуации. Тогда можно выбрать альтернативный подход и предположить, что X — также случайные переменные, а затем выяснить, какое значение следует после этого придавать нашим процедурам и какую пользу они могут принести. [c.38]
Пусть имеется р объясняющих переменных Х, ..., Хри зависимая переменная Y. Переменная Y является случайной величиной, имеющей при заданных значениях факторов некоторое распределение. Если случайная величина Y непрерывна, то можно считать, что ее распределение при каждом допустимом наборе значений факторов (х, х ,..., хр) имеет условную плотность [c.11]
Условным законом распределения одной из одномерных составляющих двумерной случайной величины (X, Y) называется ее закон распределения, вычисленный при условии, что другая составляющая приняла определенное значение (или попала в какой-то интервал). [c.37]
Используя условную плотность распределения можно найти математическое ожидание случайной величины 7, при условии того, что случайная величина X равна фиксированному значению х (условное математическое ожидание) [c.92]
Оптимальные планы многоэтапных задач с условными статистическими или вероятностными ограничениями представляют собой решающие правила или решающие распределения — зависимости компонент решения или статистических характеристик распределения составляющих решения от реализованных и наблюденных к моменту выбора решения значений случайных параметров условий задачи. [c.14]
Термин измерение случайных величин" нужно понимать как условный на самом деле измеряются числовые характеристики их законов распределения вероятности (либо определяются сами законы), которые, как известно, не являются случайными. Установить размер или измерить значение случайной величины нельзя именно потому, что они случайны. [c.181]
Свойство Маркова состоит в том, что вся информация, необходимая для определения условной вероятности будущего (следующего) значения случайной переменной, содержится в текущем состоянии этой переменной, а не в историческом распределении ее вероятностей. Для случайного блуждания это следует из предположения независимости, поскольку каждое из последующих изменений не зависит от предыдущего уровня. Однако будущее значение зависит от текущего уровня. [c.315]
Если рассмотреть случай единственного результирующего показателя т] и мысленно спроектировать все точки исследуемой многомерной системы на ось его возможных значений Or/, то получим выборку из одномерного закона с плотностью <р (//), характеризующего вероятностную природу безусловной случайной величины ц. При такой интерпретации очевидно, что плотность частного (безусловного) распределения ср (у) получается как смесь соответствующих условных плотностей [c.58]
При установлении оптимального размера страхового запаса также учитывают разнонаправленное влияние его величины на разные элементы затрат или потерь. При уменьшении страхового запаса пропорционально сокращаются издержки его хранения, но одновременно с тем возрастает вероятность потерь и убытков, к-рые несет предприятие в случае исчерпания запаса и невозможности удовлетворить требования на данный вид ресурсов. Оптимальным считается страховой запас, при к-ром сумма этих издержек и потерь является минимальной. Для определения этого оптимума нужны расчеты по выявлению вероятности исчерпания запаса и возникновения дефицитности ресурсов (с оценкой ее размеров и длительности) и по измерению потерь или убытков, к-рые вызываются такой дефицитностью. Для выявления вероятности исчерпания запаса изучают статистич. данные за довольно длительный период времени и определяют закономерность колебаний потребления соответствующего материала и сроков выполнения заказов на пополнение запаса поставщиками. Упрощенное и достаточно надежное решение этой задачи достигается применением методики Монте-Карло, сущность к-рой заключается в имитации движения запаса на основе эмпирически установленных средних значений изучаемого показателя, показателя дисперсии (8) и таблицы случайных чисел для определенного типа распределения. Так, зная, что среднесуточное потребление данного материала а = 333 единицам, а его колеблемость 8= 64, и принимая, что распределение этих отклонений следует закону нормального распределения Гаусса, можно рассчитать сколь угодно длинный ряд суточного потребления, пользуясь таблицей случайных чисел и формулой А = а+3 Е, где Е — нормализованное отклонение по таблице случайных чисел. В табл. 1 приводятся значения суточного потребления, исчисленные по данной формуле. Аналогично строится модель вероятных сроков выполнения заказов на очередные поставки. Но при этом пользуются др. рядами случайных чисел, т. к. колебания сроков выполнения заказов лучше могут быть описаны законом распределения Пуассона. Допустим, что для данных условий ряд случайных чисел, характеризующих сроки выполнения заказов, можно записать так 6,9, 5, 5, 8, 6, 7 и т. д. Отправляясь от к.-л. исходной величины остатка материалов, от полученных расчетом рядов суточного потребления и наиболее вероятных сроков выполнения заказов, строят модель движения запаса. В табл. 2 принята нормальная партия заказа в 7500 шт., а уровень запаса, при к-ром выдается заказ на его пополнение, — 2000 шт. Чтобы эта модель давала достаточно надежную базу для выводов, ее рекомендуется продолжить условно на несколько тысяч дней, для чего обычно используют электронно-вычислительные машины. [c.270]
РЕГРЕССИЯ [regression] — зависимость среднего значения какой-либо случайной величины от некоторой другой величины или нескольких величин (в последнем случае — имеем множественную Р.). Следовательно, при регрессионной связи одному и тому же значению х величины X (в отличие от функциональной связи) могут соответствовать разные случайные значения величины У. Распределение этих значений называется условным распределением Y при данном X = х. [c.305]
При оценке совместных вероятностей вы, возможно, захотите смоделировать кривые, образуемые значениями строк и столбцов таблицы, с помощью какого-нибудь математического процесса. Возможно, что при оценке совместных вероятностей или коэффициентов корреляции, введенных совместными распределениями изложенной здесь Теории Условной Вероятности, пригодится какая-нибудь разновидность регрессионного анализа, нейронных сетей или другого аппарата. Это поистине широко открытая область приложений. В главе 4 Математики управления капиталом рассказано о моделировании распределения одной случайной величины с помощью критерия Колмогорова-Смирнова. Этот метод можно также использовать для моделирования строк и столбцов таблицы совместных вероятностей. Тем, кто заинтересован в развитии сходных методов, следует изучить кривые Пирсона, а также Байесову статистику. Для этого рекомендую прочитать Прикладную теорию статистических решений Говарда Райффы и Роберта Шлайфера (изд-во Гарвардского университета, Бостон, 1961 г.) и Адаптивные процессы управления Ричарда Беллмана (изд-во Принстонского университета, Принстон, 1961 г.). [c.168]