С помощью ППП методов дискретного программирования решаются задачи линейного, динамического, стохастического, нелинейного программирования и др. [c.126]
Задачи по оптимизации решаются различными математическими методами, в основе которых лежат теория вероятностей и математическая статистика, линейная алгебра, нелинейное программирование и, в частности, его простейшая форма — квадратичное программирование, а также стохастическое и динамическое программирования и, наконец, матричное исчисление. [c.18]
Мы рассматривали стохастические аналоги задач линейного программирования. Как легко видеть, детерминированные эквиваленты задач линейного программирования со случайными параметрами условий, соответствующие, например, моделям с вероятностными ограничениями, представляют собой, вообще говоря, задачи нелинейного, а иногда и невыпуклого программирования. Поэтому в стохастическом программировании обычно несущественно, порождена ли стохастическая задача линейной или нелинейной экстремальной задачей. Если не ограничиваться стохастическими аналогами линейных моделей, можно привести более общую запись задачи стохастического программирования, объединяющую различные постановки стохастических задач. [c.10]
Определение априорных решающих распределений задач второго класса—стохастических задач вида (3.4) — (3.6)—может быть аналогичным образом сведено к решению задач конечно-мерного нелинейного программирования [148]. [c.140]
Во введении ( 1) рассмотрены постановка и содержательная интерпретация задачи. В 2 изучается область определения планов первого этапа. Параграф 3 посвящен условиям разрешимости задачи второго этапа. В 4 построена и исследуется детерминированная задача, решением которой является план первого этапа двухэтапной задачи. В 5 формулируются некоторые условия оптимальности плана первого этапа. В 6 и 7 излагаются обобщения двухэтапной задачи. В 6 построен и охарактеризован нелинейный аналог, а в 7 — бесконечно мерный аналог двухэтапной задачи стохастического программирования. [c.152]
Нелинейные аналоги двухэтапной задачи стохастического программирования [c.163]
Априорные решающие правила для частного класса нелинейных задач стохастического программирования [c.250]
При допущениях, аналогичных допущениям п. 4.1, можно построить оптимальные априорные решающие правила для частного класса нелинейных многоэтапных задач стохастического программирования с условными вероятностными ограничениями. [c.250]
В свою очередь, в зависимости от вида решаемых задач, в математическом программировании выделяют такие области, как линейное, нелинейное, дискретное, динамическое, геометрическое, стохастическое программирование. Первые четыре раздела, а также их применение для решения экономических задач составили содержание последующих глав. [c.16]
Каждый из четырех подходов к динамическому инвестированию имеет в себе нечто привлекательное. Решающие правила гораздо проще для реализации, а соответствующие оптимизационные задачи не заставляют нас прибегать к крупномасштабным процедурам линейного и нелинейного программирования. Они могут быть без труда протестированы на выбранных сценариях (путем имитации) и обеспечивают приемлемые доверительные интервалы для рекомендаций. Они интуитивно ясны для большинства профессиональных инвесторов. Однако они способны привести к невыпуклым моделям оптимизации, которые требуют интенсивных расчетов для нахождения глобально-оптимального решения. Кроме того, правила, естественно, могут привести к субоптимальному поведению. Стохастическое программирование дает основу для построения моделей общего назначения, которые могут принимать во внимание особенности реального мира, такие как ограничения на оборотные средства опера- [c.20]
Проблема оптимизации поисково-разведочных работ формулируется как детерминированная задача линейного и динамического программирования различной структуры и степени сложности с функционалом в виде минимизации суммарных затрат на прирост запасов или максимизации прироста запасов для заданного лимита капиталовложений. При такой постановке вопроса, на наш взгляд, многие важные аспекты решаемой проблемы оказываются не учтенными. В первую очередь это касается экономической ценности, а также ограниченности ресурсов в недрах. Последнее выражается в затратах обратной связи (рентной оценке) исчерпания возможных открытий. В большинстве предложенных моделей ограничения на суммарный объем извлекаемых запасов в явном виде не отражаются. Далее, рассматриваемые модели обычно линейные и детерминированные, в то время как функция затраты — выпуск в ГРР имеет резко выраженный нелинейный и стохастический характер. Наконец, в моделях не учитывается фактор времени, что недопустимо при изучении столь длительных процессов, как освоение ресурсов нефти и газа. [c.165]
В 1—2 рассматриваются стохастические задачи с вероятностными ограничениями, порожденные моделями линейного программирования. В 1 оператор вероятности применяется к каждой строке ограничений в отдельности, а в 2 — одновременно к совокупности всех ограничений. В обоих параграфах рассматриваются такие распределения случайных параметров условий, при которых эквивалентные детерминированные задачи оказываются задачами выпуклого программирования. Параграф 3 посвящен построению эквивалентных детерминированных моделей для общей одноэтапной стохастической задачи с вероятностными ограничениями, порожденной, вообще говоря, нелинейной моделью математического программирования. В 4 рассматриваются две простые, но представляющие интерес для приложений частные модели стохастических задач, в которых решения определяются в детерминированных векторах. Параграфы 5—6 посвящены стохастическим моделям оценки невязок с детерминированными оптимальными планами. В 5 рассматривается классификация таких моделей. В 6 исследуются условия, при которых соответствующие детерминированные эквивалентные задачи являются задачами выпуклого программирования. Ясно, что только в таких случаях можно говорить о конструктивных методах решения задачи. [c.62]
Более широкие возможности имеет пакет Стохастическая оптимизация", созданный на базе ППП Линейное программирование в АСУ" (ППП ЛП АСУ) [102]. ППП ЛП АСУ предназначен для решения и анализа задач линейного программирования (ЛП), нелинейного программирования (НЛП) с нелинейными функциями сепарабельного вида, целочисленного программирования (ЦП) и задач специальной узкоблочной структуры. Размерность решаемых задач составляет для ЛП до 16000 строк, для ЦП — до 4095 целочисленных переменных и 60000 строк для задач узкоблочной структуры. Пакет может быть использован также для решения задач стохастического программирования (СТП) при построчных вероятностных ограничениях. В последнем случае необходимо предварительно построить детерминированный аналог. [c.179]
Каилииский A.M., Пропой А.И. О стохастическом подходе к задачам нелинейного программирования // Автоматика и телемеханика. - 1970. [c.404]
Иоффе А. Д., Юдин Д. Б. О некоторых нелинейных задачах стохастического программирования. — Журнал зыч. мат. и мат. физ. , 1970, т. 10, № 1. [c.386]
Основные алгоритмы для получения решений в стохастическом программировании распадаются на три группы прямые методы, прежде всего методы внутренней точки, методы декомпозиции Бандерса и методы декомпозиции на основе модифицированных функций Лагранжа. Эти методы высокоэффективны и используют специфику древовидной структуры множества сценариев. В настоящее время возможно решать задачи нелинейного стохастического программирования с числом сценариев свыше 10000. И что более важно, время счета по программе является линейной функцией числа сценариев. Таким образом, учитывая рост быстродействия компьютеров на 40 - 50 % в год, можно наращивать размерность задач стохастического программирования аналогичным образом. В то же время отметим, что необходим компромисс между реалистичностью модели и удобством ее использования. [c.24]
Модель (1)-(9) представляет собой задачу нелинейного стохастического программирования, которая может быть сведена к эквива -лентной детерминированной задаче заменой условий (3) соответствующими детерминированными эквивалентами. Как следует из (I), ее минимизация осуществляется как по глобальным переменным системы Pj, Pj, Ц ц так и по техническим решениям элементов ц -, Их оптимальные значения могут определяться, например, бозградиент-ными методами минимизации по векторам Р -, 9j, QIJ При этом в ходе решения (при фиксированных / Р, , Q j ) выбираются технические решения по газопроводным участкам и компрессорным станциям. [c.32]
Система условий (2.58) — (2.61), при определенных допущениях, может оыть сведена к детерминированной нелинейной системе [43]. Включение указанных условий в оптимизационную задачу с целью единовременного комплексного решения проблемы выбора оптимальных уровней надежности и варианта производственной программы комплекса НПП представляет собой сложную, а ввиду отсутствия в настоящее время эффективных численных методов практически нерешаемую в реальном масштабе времени проблему. Все это позволяет утверждать, что перспективы развития методов динамического моделирования связаны, прежде всего, с развитием методов стохастического программирования. [c.49]
При линейных ограничениях выбор показателя качества идентификации в виде положительно определенной квадратичной формы (6.14) вполне оправдан. Модели квадратичного стохастического программирования поддаются конструктивному анализу. Учет нелинейных ограничений вида (6.15)-—(6.17) приводит к евылуклой и несвязной области допустимых планов. Исследование задач с. такими ограничениями связано с большими вычислительными трудностями независимо от выбора целевого функционала. В таких задачах выбор критерия качества иденти- фикации определяется главным образом содержательными соображениями. Трудности, связанные с упрощением вычислительной процедуры, отходят здесь на второй план. [c.49]
Иоффе А. Д., Юдин Д. Б. О некоторых задачах нелинейного стохастического программирования. ДАН СССР, 1969, т. 186, № 1, с. 16—18. [c.386]
Многие специалисты определяют задачи Э. как формализованное описание и прогнозирование экономии, процессов на основе статистич. анализа данных и ограничивают Э. разработкой и применением аналитич. моделей, причём иногда по традиции — лишь аналити-ко-статистич. (регрессионных) моделей. Однако с 30-х гг. наряду с ними возник др. класс моделей — нормативных. Эти модели позволяют не только рассчитывать варианты структуры и динамики экономич. объектов, но и по определ. критерию оценки выбрать наилучший (оптимальный) вариант. Значит, вклад в их разработку был сделан сов. учёным Л. В. Канторовичем — создателем линейного программирования (1939), что дало возможность ему, В. В. Новожилову, А. Л. Лурье (СССР), Т. Купмансу, Дж. Данцигу (США) и др. сформулировать и решить широкий спектр экономич. задач оптим. распределения и использования ресурсов. Дальнейшее развитие методов оптимизации привело к разработке различных типов нормативных моделей (большое влияние здесь оказали работы Дж. Неймана). В зависимости от характера переменных и формы связей между ними модели могут быть линейными и нелинейными, непрерывными и дискретными, детерминированными и стохастическими и т. д. Их особенностями определяется применение соответствующих методов математического программирования, исследования операций, теории игр. В социалистич. странах нормативные модели широко используются при оптимизации нар.-хоз. планирования на всех его уровнях (напр., работы Н. Н. Некрасова и Н. П. Федоренко в области химизации и развития химич. пром-сти в СССР). В капиталистич. странах методы оптимизации применяются в рамках отд. фирм, а также при разработке гос. программ. В СССР и др. социалистич. странах широко изучается внутр. связь нормативных и аналитич. моделей, создаются комплексы моделей, включающие оба эти типа, разрабатываются их научно-теоретич. основы. Тем самым расширяется круг проблем Э. [c.434]