Модели нелинейные стохастические

Модели нелинейные стохастические 188  [c.483]

Нелинейные стохастические условно-гауссовские модели.............................................. 188  [c.102]


Нелинейные стохастические условно-гауссовские модели  [c.188]

Ниже мы даем описание ряда нелинейных стохастических и хаотических моделей, популярных в финансовой математике и финансовой статистике, не претендуя на их широкий охват, а желая дать как бы "введение" в этот круг вопросов. (По поводу изложения некоторых нелинейных моделей можно порекомендовать, например, монографии [193], [202], [461], [462].)  [c.189]

В упомянутых ситуациях предполагается, что зависимости между параметрами модели имеют линейный характер, что сохраняется и с течением времени. В принципе такая предпосылка весьма условна, поэтому в теории принятия решений разработаны также методы нелинейного, динамического, стохастического, выпуклого программирования, которые гораздо более сложны и в анализе деятельности отдельных предприятий применяются крайне редко.  [c.141]


Разнообразны типы математических моделей, используемых на различных уровнях при оптимизации -планирования развития ЕГС линейные, нелинейные, целочисленные, стохастические модели.  [c.61]

Опыт применения в нефтеперерабатывающей промышленности детерминированных моделей, формализация которых осуществлялась в основном на базе методов линейного программирования, показал объективную необходимость привлечения аппарата нелинейного и стохастического программирования для повышения адекватности математического описания нефтеперерабатывающих производств реальным условиям принятия и реализации планово-управленческих решений.  [c.3]

Проблема оптимизации поисково-разведочных работ формулируется как детерминированная задача линейного и динамического программирования различной структуры и степени сложности с функционалом в виде минимизации суммарных затрат на прирост запасов или максимизации прироста запасов для заданного лимита капиталовложений. При такой постановке вопроса, на наш взгляд, многие важные аспекты решаемой проблемы оказываются не учтенными. В первую очередь это касается экономической ценности, а также ограниченности ресурсов в недрах. Последнее выражается в затратах обратной связи (рентной оценке) исчерпания возможных открытий. В большинстве предложенных моделей ограничения на суммарный объем извлекаемых запасов в явном виде не отражаются. Далее, рассматриваемые модели обычно линейные и детерминированные, в то время как функция затраты — выпуск в ГРР имеет резко выраженный нелинейный и стохастический характер. Наконец, в моделях не учитывается фактор времени, что недопустимо при изучении столь длительных процессов, как освоение ресурсов нефти и газа.  [c.165]


Методы И.о., как и любые математические методы, всегда в той или иной мере упрощают, огрубляют задачу, отражая нелинейные процессы линейными моделями, стохастические системы — детерминированными и т.д. Жизнь богаче любой самой сложной схемы. Поэтому не следует ни преувеличивать значения количественных методов И.о., ни преуменьшать его, ссылаясь на примеры неудачных решений. Уместно привести в связи с этим известное парадоксальное определение, которое дал крупный американский специалист в этой области Т. А. Саа-ти "Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими способами..."  [c.136]

Мы рассматривали стохастические аналоги задач линейного программирования. Как легко видеть, детерминированные эквиваленты задач линейного программирования со случайными параметрами условий, соответствующие, например, моделям с вероятностными ограничениями, представляют собой, вообще говоря, задачи нелинейного, а иногда и невыпуклого программирования. Поэтому в стохастическом программировании обычно несущественно, порождена ли стохастическая задача линейной или нелинейной экстремальной задачей. Если не ограничиваться стохастическими аналогами линейных моделей, можно привести более общую запись задачи стохастического программирования, объединяющую различные постановки стохастических задач.  [c.10]

В 1—2 рассматриваются стохастические задачи с вероятностными ограничениями, порожденные моделями линейного программирования. В 1 оператор вероятности применяется к каждой строке ограничений в отдельности, а в 2 — одновременно к совокупности всех ограничений. В обоих параграфах рассматриваются такие распределения случайных параметров условий, при которых эквивалентные детерминированные задачи оказываются задачами выпуклого программирования. Параграф 3 посвящен построению эквивалентных детерминированных моделей для общей одноэтапной стохастической задачи с вероятностными ограничениями, порожденной, вообще говоря, нелинейной моделью математического программирования. В 4 рассматриваются две простые, но представляющие интерес для приложений частные модели стохастических задач, в которых решения определяются в детерминированных векторах. Параграфы 5—6 посвящены стохастическим моделям оценки невязок с детерминированными оптимальными планами. В 5 рассматривается классификация таких моделей. В 6 исследуются условия, при которых соответствующие детерминированные эквивалентные задачи являются задачами выпуклого программирования. Ясно, что только в таких случаях можно говорить о конструктивных методах решения задачи.  [c.62]

Во всех рассматриваемых далее моделях (линейных и нелинейных) предполагается заданной некоторая " базисная " последовательность е = (еп), которую в теории временных рядов обычно считают белым шумом (см. рис. 17) и которая идентифицируется с источником случайности, определяющим стохастический характер исследуемых вероятностно-статистических объектов.  [c.148]

Каждый из четырех подходов к динамическому инвестированию имеет в себе нечто привлекательное. Решающие правила гораздо проще для реализации, а соответствующие оптимизационные задачи не заставляют нас прибегать к крупномасштабным процедурам линейного и нелинейного программирования. Они могут быть без труда протестированы на выбранных сценариях (путем имитации) и обеспечивают приемлемые доверительные интервалы для рекомендаций. Они интуитивно ясны для большинства профессиональных инвесторов. Однако они способны привести к невыпуклым моделям оптимизации, которые требуют интенсивных расчетов для нахождения глобально-оптимального решения. Кроме того, правила, естественно, могут привести к субоптимальному поведению. Стохастическое программирование дает основу для построения моделей общего назначения, которые могут принимать во внимание особенности реального мира, такие как ограничения на оборотные средства опера-  [c.20]

Модель (1)-(9) представляет собой задачу нелинейного стохастического программирования, которая может быть сведена к эквива -лентной детерминированной задаче заменой условий (3) соответствующими детерминированными эквивалентами. Как следует из (I), ее минимизация осуществляется как по глобальным переменным системы Pj, Pj, Ц ц так и по техническим решениям элементов ц -, Их оптимальные значения могут определяться, например, бозградиент-ными методами минимизации по векторам Р -, 9j, QIJ При этом в ходе решения (при фиксированных / Р, , Q j ) выбираются технические решения по газопроводным участкам и компрессорным станциям.  [c.32]

НЕЛИНЕЙНАЯ МОДЕЛЬ [nonlinear model] — экономико-математическая модель, отображающая состояние или функционирование системы (нелинейной системы, стохастической системы) таким образом, что все или некоторые взаимосвязи в ней принимаются нелинейными, т.е. не удовлетворяющими условиям линейности (см. Линейная зависимость, линейность). Основная область применения нелинейных моделей —нелинейное программирование.  [c.220]

При линейных ограничениях выбор показателя качества идентификации в виде положительно определенной квадратичной формы (6.14) вполне оправдан. Модели квадратичного стохастического программирования поддаются конструктивному анализу. Учет нелинейных ограничений вида (6.15)-—(6.17) приводит к евылуклой и несвязной области допустимых планов. Исследование задач с. такими ограничениями связано с большими вычислительными трудностями независимо от выбора целевого функционала. В таких задачах выбор критерия качества иденти- фикации определяется главным образом содержательными соображениями. Трудности, связанные с упрощением вычислительной процедуры, отходят здесь на второй план.  [c.49]

Нелинейный стохастический процесс, где дисперсия изменяется во времени и зависима от прошлой дисперсии. AR H-процессы имеют частотные распределения, которые отличаются остротой вершин в среднем значении и толстыми хвостами, что очень похоже на фрактальные распределения. Обобщенная модель AR H (GAR H) также широко используется. См. фрактальное распределение .  [c.284]

В заключение настоящего раздела, посвященного нелинейным стохастическим моделям и их свойствам, осталовимся на упоминавшемся эффекте "тяжелых хвостов" наблюдаемом в этих моделях. (См. также 2с, гл. IV.)  [c.215]

Основные алгоритмы для получения решений в стохастическом программировании распадаются на три группы прямые методы, прежде всего методы внутренней точки, методы декомпозиции Бандерса и методы декомпозиции на основе модифицированных функций Лагранжа. Эти методы высокоэффективны и используют специфику древовидной структуры множества сценариев. В настоящее время возможно решать задачи нелинейного стохастического программирования с числом сценариев свыше 10000. И что более важно, время счета по программе является линейной функцией числа сценариев. Таким образом, учитывая рост быстродействия компьютеров на 40 - 50 % в год, можно наращивать размерность задач стохастического программирования аналогичным образом. В то же время отметим, что необходим компромисс между реалистичностью модели и удобством ее использования.  [c.24]

Научная эволюция представляет собой вероятностный процесс. Стохастическая модель служит основой ряда попыток компьютерного моделирования процессов научного развития. Было установлено, что закон развития научных сообществ в отдельных областях науки характеризуется медленной начальной фазой, фазой быстрого роста и фазой выхода на насыщение. Возникновение новой области науки может сопровождаться в начальной фазе почти полным отсутствием интереса. Ярким примером замедленного развития в истории науки может служить сама теория хаоса, которой в ее начальной фазе занимались очень немногие ученые (например, Пуанкаре). Хотя математические основы этой теории были совершенно ясны, ее быстрое развитие началось лишь несколько лет назад, когда технология вычислений научилась справляться с нелинейными уравнениями.  [c.387]

Более детальное изучение процессов взаимодействия нефтеперерабатывающего комплекса с внешней средой привело к существенному пересмотру возможностей таких моделей. Возникла необходимость разработки двухуровневых моделей, отражающих объективно присущую комплексам иерархичность структуры. Эффективность двухуровневых моделей оказалась выше одноуровневых, так как они включали в себя относительно детализированное описание нижнего уровня, во многом определяющего состояние всей системы планирования нефте-перераоатывающего комплекса. При этом совокупность технико-экономических показателей, характеризующих систему, не изменилась, но в существенной мере повысилась степень подробности описания. В свою очередь большая детализация выявила необходимость ввода как нелинейных, так и стохастических зависимостей, позволяющих повысить адекватность моделей.  [c.99]

Вторая модель - модель, "управляемая ценой", обсуждаемая в данной главе, также основана на взаимодействии двух разных и взаимодополняющих друг с другом групп трейдеров. Первая группа шумовых трейдеров своим коллективным поведением приводит к росту волатильность цен по ускоряющейся, но стохастической спирали, обеспечивая, тем самым, возникновение ценовых пузырей. Рациональные инвесторы, понимая, что пузырь не подкреплен фактами, оценивают существование связанного с ним риска краха или серьезной коррекции, которая может привести цену назад к фундаментальной стоимости. Это поведение, воплощенное в условии отсутствия арбитража, приводит к следующим последствиям аномально взмывающие ввысь цены подразумевают растущую угрозу краха, определяемая как реальная возможность реализации такого сценария уже на следующий день с некоторой вероятностью. Растущий риск краха -неизбежная темная сторона рыночных доходов. Повторимся еще раз, крахи - это стохастические явления, оцениваемые количественно их коэффициентом риска, который отклоняется от нормального значения по мфе роста рьшочнои стоимости. В данной модели долгосрочное стационарное поведение рынка состоит из ряда временных интервалов, описываемых случайным блужданием, перемежающихся с интфвалами пузырей, которые заканчиваются крахами, возвращающими рынок ближе к фундаментальным оценкам, подобно тому, как резвящийся щенок, бегущий на поводке со своей хозяйкой, получает тычки, которые встряхивают его каждый раз, когда он полностью натягивает поводок. Замечательным свойством данной модели является то, что крах никогда не наступает при условии, что цены остаются в разумных пределах. Это происходит в силу того факта, что коэффициент риска краха является сильно нелинейной функцией ценового уровня, которая работает подобно усилителю. Вероятность краха, таким образом, очень низка при незначительных колебаниях цены от фундаментальной стоимости, но она все больше растет по мере роста цены. Даже если рыночная цена взмывает ввфх, всегда остается возможность, что она вернется к исходному положению мягко, без краха. Данный сценарий, однако, становится все менее и менее вфоятным, по мфе роста цены.  [c.155]

Но самое важное заключалось в том, что даже теоретически правильные нелинейные модели могли привести к полной непредсказуемости, хотя они были детерминированными и структурированными по своему характеру. Это означает, что системы нарушались стохастическими внешними неупорядоченно-стями и непредсказуемость могла быть элементом собственной эндогенной природы макроэкономических систем. Как это может проявляться, показывает, например, феномен, называемый "раздвоение".  [c.58]

Многие специалисты определяют задачи Э. как формализованное описание и прогнозирование экономии, процессов на основе статистич. анализа данных и ограничивают Э. разработкой и применением аналитич. моделей, причём иногда по традиции — лишь аналити-ко-статистич. (регрессионных) моделей. Однако с 30-х гг. наряду с ними возник др. класс моделей — нормативных. Эти модели позволяют не только рассчитывать варианты структуры и динамики экономич. объектов, но и по определ. критерию оценки выбрать наилучший (оптимальный) вариант. Значит, вклад в их разработку был сделан сов. учёным Л. В. Канторовичем — создателем линейного программирования (1939), что дало возможность ему, В. В. Новожилову, А. Л. Лурье (СССР), Т. Купмансу, Дж. Данцигу (США) и др. сформулировать и решить широкий спектр экономич. задач оптим. распределения и использования ресурсов. Дальнейшее развитие методов оптимизации привело к разработке различных типов нормативных моделей (большое влияние здесь оказали работы Дж. Неймана). В зависимости от характера переменных и формы связей между ними модели могут быть линейными и нелинейными, непрерывными и дискретными, детерминированными и стохастическими и т. д. Их особенностями определяется применение соответствующих методов математического программирования, исследования операций, теории игр. В социалистич. странах нормативные модели широко используются при оптимизации нар.-хоз. планирования на всех его уровнях (напр., работы Н. Н. Некрасова и Н. П. Федоренко в области химизации и развития химич. пром-сти в СССР). В капиталистич. странах методы оптимизации применяются в рамках отд. фирм, а также при разработке гос. программ. В СССР и др. социалистич. странах широко изучается внутр. связь нормативных и аналитич. моделей, создаются комплексы моделей, включающие оба эти типа, разрабатываются их научно-теоретич. основы. Тем самым расширяется круг проблем Э.  [c.434]

По поводу же того, какими нелинейными моделями следует пользоваться-стохастическими, хаотическими ("динамическийхаос") иликакими-то еще - нет единодушного мнения и много сторонников и аргументов в пользу как тех, так и других подходов.  [c.188]

Смотреть страницы где упоминается термин Модели нелинейные стохастические

: [c.203]    [c.234]    [c.75]   
Основы стохастической финансовой математики Т.2 (1998) -- [ c.188 ]