Метод Монте-Карло (статистических испытаний)

Метод Монте-Карло (статистических испытаний)  [c.121]

Метод Монте-Карло основан на статистических испытаниях и по природе своей является экстремальным, может применяться для решения полностью детерминированных задач, таких, как обращение матриц, решение дифференциальных уравнений в частных производных, отыскание экстремумов и численное интегрирование. При вычислениях методом Монте-Карло статистические результаты получаются путем повторяющихся испытаний. Вероятность того, что эти результаты отличаются от истинных не более чем на заданную величину, есть функция количества испытаний.  [c.19]


Теории массового обслуживания, статистических испытаний (или метод Монте-Карло) и статистических решений применимы для решения организационных задач.  [c.152]

Получение характеристик систем массового обслуживания подобного класса возможно с помощью метода статистических испытаний — метода Монте-Карло, т.е. путем создания имитационной модели, на которой проигрывают различные ситуации, возникающие в процессе выполнения оперативного плана.  [c.232]

С помощью теории массового обслуживания можно получить аналитические выражения и при других дисциплинах обслуживания очереди и конфигурациях вычислительной системы. Рассматривая модель обслуживания заданий, мы исходим из предположений того, что процессы в системе - марковские, а потоки - простейшие. Если эти предположения неверны, то получить аналитические выражения трудно, а чаще всего невозможно. Для таких случаев моделирование проводится с помощью метода статистических испытаний (метода Монте-Карло), который позволяет создать алгоритмическую модель,  [c.76]


В этой программе процесс генерации псевдослучайных чисел по отношению к известным методам генерации упрощен. Напомним, что в основе этих методов лежит метод статистических испытаний, или метод Монте-Карло, применение которого обосновывается предельными теоремами теории вероятностей.  [c.154]

Одним из наиболее оправдавших себя на практике методов приближенного решения нелинейных целочисленных задач является метод статистических испытаний (метод Монте-Карло).  [c.194]

Как только определены внешние по отношению к стратегии параметры, можно перейти к оценке стратегий. Обычно модель включает процедуры статистических испытаний (метод Монте-Карло) и экономической оценки открываемых месторождений. На основе математических и логических соотношений осуществляется процесс случайного выбора. В результате получают распределения частоты возможных исходов для изучаемого параметра или их совокупности.  [c.180]

Алгоритм анализа графа с возвратом основан на использовании метода статистических испытаний и известного алгоритма Форда для сетевых графиков. Процедура Форда используется для расчета временных параметров отдельных фрагментов графа с учетом их топологии и задаваемых характеристик, а методами Монте-Карло имитируется реализация соответствующих дуг возврата. Таким образом, центральной процедурой алгоритма является моделирование событий контроля и согласования методом статистических испытаний. Исходы этих событий описываются вероятностями повторного исполнения определенных фрагментов проекта.  [c.197]

Метод Монте-Карло, или метод статистических испытаний, позволяет искусственно моделировать случайные процессы в тех  [c.140]


В практике применяются и другие методы. В последнее время популярен метод статистических испытаний ( метод Монте-Карло ). Преимуществом его является возможность анализировать и оценивать различные сценарии реализации проекта и учитывать разные факторы риска в рамках единого подхода.  [c.393]

Метод статистических испытаний (метод Монте-Карло) — первоначально использовался в системе ПЕРТ для вычисления ожидаемой продолжительности каждого этапа проекта и всего проекта в целом.  [c.121]

МЕТОД СТАТИСТИЧЕСКИХ ИСПЫТАНИЙ — см Метод Монте-Карло  [c.139]

Для исследований базисной устойчивости стохастической транспортной задачи может быть использован метод статистических испытаний (метод Монте-Карло) в сочетании с двойственным методом потенциалов. При этом данные, характеризующие ресурсы поставщиков и потребности потребителей, формируются ЭВМ на основе определенных законов распределения и возможных интервалов их изменений. Под набором подразумевается совокупность величин ресурсов и потребностей, которые соответствуют их предполагаемым значениям в заранее определенных интервалах. Необходимое число наборов значений ресурсов и потребностей формируется соответствующей машинной программой для ЭВМ Минск-22 . При этом по рекуррентному соотношению по способу перемешивания определяется последовательность квазислучайных чисел, обладающих статистическими свойствами последовательности независимо от выбранных значений равномерно распределенной случайной величины =f (l/z-i),l г /г ЛЛ Полученные числа обычно удовлетворяют системе принятых статистических критериев для проверки равномерности распределения.  [c.112]

Применение методов статистических испытаний (метод Монте-Карло) в сочетании с двойственным методом потенциалов для установления рациональных длительных связей, предполагающее при разработке схем прикреплений рассмотрение целого ряда периодов планирования, является новым методологическим подходом к проблеме формирования связей и дальнейшим развитием методологии ЦЭМИ АН СССР по оптимальному планированию поставок продукции.  [c.114]

При имитационном моделировании применяется много математических схем конечные и вероятностные автоматы, системы массового обслуживания (СМО), агрегативные системы, системы, описываемые дифференциальными уравнениями и марковскими процессами, методы общей теории систем, а также специально сконструированные эвристические подходы для конкретных типов объектов моделирования. Применительно к экономическим объектам и процессам наиболее часто используются, на наш взгляд, математические схемы СМО, агрегативные системы, а также эвристические подходы. Кроме этого, отдельные элементы метода статистических испытаний или метода Монте-Карло, которые лежат в основе имитационного моделирования, применяются достаточно часто при расчете различных параметров для других типов моделей — эконометрических, моделей кривых роста и т.п. В данной главе будут рассмотрены имитационные модели СМО и агрегативные имитационные модели. Естественно, приведенные ниже математические схемы ни в коей мере не исчерпывают их перечень. Кроме того, часто при имитационном моделировании применяется сочетание различных математических подходов, поэтому дать весь перечень применяемых математических схем затруднительно, да и вряд ли целесообразно. Главное — наличие имитационного мышления при выборе тех или иных математических подходов.  [c.229]

Прежде чем мы начнем, мы должны разобраться с мифом о "случайных числах". Ни один генератор случайных чисел не производит истинные случайные числа. Вместо них алгоритм производит псевдослучайные числа - числа, которые являются статистически независимыми согласно большинству гауссовых признаков. Эти псевдослучайные числа фактически имеют длинный цикл, или память, после которого они начинают повторяться. Как правило, циклы достаточно длинны для того, чтобы повторение не обнаруживалось. Недавно, однако, было найдено, что псевдослучайные числа могут исказить результаты, когда большие количества данных используются в моделированиях по методу Монте-Карло. Обычно мы не сталкиваемся с этой проблемой в финансовой экономике. Однако многие из алгоритмов, используемых в качестве генераторов случайных чисел, являются версиями хаотических систем. R/S-анализ особенно хорошо справляется с раскрытием детерминированного хаоса и процессов с долговременной памятью. Поэтому чтобы гарантировать случайность наших испытаний, все ряды случайных чисел в этой книге перед использованием перемешиваются согласно двум другим рядам псевдослучайных чисел. Этот метод не устраняет всю зависимость, но сводит ее к фактически неизмеримым уровням, даже для R/S-анализа.  [c.75]

К сожалению, ответов, основанных на теоретических работах, на поставленные вопросы на сегодняшний день не существует. По-видимому, единственным инструментом исследования свойств оценок параметров одновременных эконометрических уравнений в условиях конечных выборок является метод статистических испытаний, или метод Монте-Карло.  [c.423]

В качестве соответствующих им переменных могут использоваться число, совокупность чисел, вектор или функция. Одной из разновидностей метода Монте-Карло при численном решении задач,-включающих случайные переменные, является метод статистических испытаний, который заключается в моделировании случайных событий.  [c.18]

Метод Монте-Карло - метод статистических испытаний, проводимых с помощью ЭВМ и программ - датчиков псевдослучайных величин. Иногда название этого метода ошибочно применяется в качестве синонима имитационного моделирования.  [c.352]

Однако для сложных систем и процессов, к которым относится, например, система массового обслуживания, не всегда удается составить модель, адекватную реальной действительности. Теория статистических испытаний, частным случаем которой является метод Монте-Карло, позволяет в таких случаях выйти из затруднительного положения. Она основана на действии закона больших чисел. В силу этого закона оценки, полученные посредством большого числа реализаций случайного процесса, приобретают статистическую устойчивость и могут с достаточной для практики точностью использоваться в качестве примерных значений искомой величины.  [c.260]

К совокупности методов моделирования относят такие методы как статистического имитационного моделирования, моделирования операций по схемам случайных процессов и статистических испытанийметод Монте-Карло и ряд других.  [c.116]

Метод Монте-Карло представляет собой расчетный численный способ решения исследовательских задач математического характера на основе моделирования случайных величин и формализованного описания неопределенности. Этот способ, называемый также методом статистических испытаний, на основе статистических данных и различного рода ограничений позволяет сформировать имитационные модели и создать множество сценариев реализации задач исследования и выбрать наиболее вероятный из них.  [c.121]

Формализация (аналитические математические методы интегрального, дифференциального и вариационного исчислений, теории вероятностей, теории игр, поиска максимумов и минимумов функций, в том числе методы математического программирования, например, линейного и динамического, математической логики, теории множеств Монте-Карло статистические методы математической статистики, статистического имитационного моделирования, моделирования операций по схемам случайных процессов и статистических испытаний, исследования операций и массового обслуживания, теории информации графические методы теории графов номограмм, диаграмм, гистограмм, графиков) Аксиоматизация Идеализация  [c.407]

Для определения доверительного интервала времени и оценки надежности выполнения заказа может применяться имитационное моделирование (метод статистических испытаний или метод Монте-Карло), которое заключается в воспроизведении исследуемого процесса при помощи вероятностной математической модели. Одно такое воспроизведение функционирования системы называют реализацией или испытанием . Метод основан на многократных испытаниях построенной модели с последующей статистической обработкой полученных данных с целью определения числовых характеристик исследуемого процесса в виде статистических оценок его параметров.  [c.129]

МЕТОД МОНТЕ-КАРЛОчисленный метод, основу которого составляет получение большого числа реализаций случайного процесса, который формируется так, чтобы вероятные характеристики (математические ожидания, вероятность некоторых событий, вероятность попадания траектории процесса в некоторую область и т. д.) равнялись определенным величинам решаемой задачи. Экономический эксперимент может заменяться статистическими испытаниями модели экономического процесса. Построение модели процесса может основываться на распределении случайных величин в исследуемом процессе. Рассматриваемый метод широко применяется при решении экономических задач, исследовании функционирования сложных систем (например, АСУ). Этот метод достаточно эффективен в теории массового обслуживания.  [c.367]

Далее применяется метод Монте-Карло (метод статистических испытаний) для оценки распределения стоимости портфеля на следующий день. Случайным образом генерируются значения фьючерсной котировки и волатильности. Эти величины подаются на вход модели, применяемой для расчета стоимости портфеля. Результирующее распределение стоимости портфеля дает наглядное представление о возможных исходах на следующий день. На рис. 13.3 показано распределение, полученное по 10000 испытаниям. Непосредственно видно, что это распределение значительно отличается от гауссовского из-за нелинейности графиков стоимости опционов. Для оценки возможных потерь задаются некоторым доверительным уровнем, скажем, 95%, и определяют порог, ниже которого стоимость портфеля оказывается в оставшихся 5% случаев. В терминологии теории вероятностей этот порог называется 5%-ной квантилью рассматриваемого распределения. В данном примере таким порогом оказывается -23.68. Эта величина и есть VaR портфеля в данном примере.  [c.98]

Замечание (по поводу термина - метод статистических испытаний (метод Монте-Карло). Мы знаем, то это метод моделирования случайных величин, объектов с последующим использованием статистических характеристик для приближенного решения соответствующей аналитической задачи. Другими словами - численный метод решения аналитических задач.  [c.11]

Исследование свойств изучаемого объекта часто проводят с помощью метода статистических испытаний (метода Монте—Карло).  [c.303]

В последнее время стал популярен метод статистических испытаний (метод "Монте-Карло") [3]. К числу достоинств этого метода следует отнести возможность анализировать и оценивать различные "сценарии" реализации проекта. Более подробно описание метода дано в 4.2.  [c.189]

Читатель найдет здесь доступное описание основных экономико-математических методов, построенных как на традиционном аппарате математики и логики, известном из школьных программ (дроби, проценты, уравнения, прогрессии, геометрические и логические задачи), так и на основе методов исследования операций - современном математическом аппарате, специально созданном для решения тех задач, с которыми элементарная математика не справляется. Это методы оптимизации (линейное, нелинейное и динамическое программирование), теория вероятностей и математическая статистика, теория массового обслуживания (теория очередей), метод статистических испытаний (Монте-Карло), теория игр и статистических решений, сетевое планирование.  [c.6]

Наряду с элементарной математикой и логикой рассматриваются также задачи, требующие применения аппарата высшей математики, особенно в теории вероятностей и математической статистике, а также в таких сравнительно молодых методах, как математическое программирование (линейное, нелинейное, динамическое), теория игр и статистических решений, теория массового обслуживания (теория очередей), метод статистических испытаний (Монте-Карло), сетевое планирование.  [c.11]

Неопределенность исходной информации также следует учитывать при выработке реальных плановых решений. Эта неопределенность имеет разные (как субъективные, так и объективные) причины, но практически присуща всем задачам планирования. Для задач перспективного (особенно долгосрочного) планирования эта неопределенность отражает объективный фактор — принципиальную невозможность точного знания всех условий и параметров в перспективе, для задач на меньшие периоды планирования неопределенность исходной информации в широком смысле может являться следствием как недостоверности исходных данных, так и стохастичности природных явлений (погодных и др.) — случай вероятностной определенности. Учет фактора неопределенности исходной информации может проводиться как использованием специальных методов учета вероятностных параметров, таких как стохастическое программирование, а также метод Монте-Карло (статистических испытаний), теория массового обслуживания и др., так и выбором соответствующих приближенных схем, человеко-машинных методов и т. д. При первом направлении для неопределенных параметров исходной информации на основе экспертных оценок, ограниченных статистических данных и методов математической статистики гипотети-118  [c.118]

Бусленко Н. П. и др. Метод статистических испытаний (метод Монте-Карло). М., Физматгаз, 1962.  [c.214]

МЕТОД МОНТЕ-КАРЛО, метод статистических испытаний (Monte arlo method) — числ способ решения матем и др задач Применяется гл о в случаях, когда построение модели математической исследуемого явления в аналитическом (формульном) виде затруднено или невозможно М М -К заключается в моделировании исследуемого явления с помощью нек-рой процедуры, дающей случайный результат Чем больше кол-во реализаций случайного процесса получено в результате моделирования, тем полнее будет стат материал, обрабатываемый обычными методами математической статистики При моделировании логистических систем с  [c.139]

Статистические испытания по методу Монте-Карло представляют собой простейшее имитационное моделирование при полном отсутствии каких-либо правил поведения. Получение выборок по методу Монте-Карло - основной принцип компьютерного моделирования систем, содержащих стохастические или вероятностные элементы. Зарождение метода связано с работой фон Неймана и Улана в конце 1940-х гг., когда они ввелит5ля- вшлазвание.. Монте-  [c.17]

Имитационное моделирование является относительно новым и быстро развивающимся методом исследования поведения систем управления. Этот метод состоит в том, что с помощью ЭВМ воспроизводится поведение исследуемой системы управления, а исследователь-системотехник, управляя ходом процесса имитации и обозревая получаемые результаты, делает вывод о ее свойствах и качестве поведения. Поэтому под имитацией следует понимать численный метод проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение системы управления для определения интересующих нас функциональных характеристик. Появление имитационного моделирования и превращение его в эффективное средство анализа сложных систем было, с одной стороны, обусловлено потребностями практики, а с другой стороны, обеспечено развитием метода статистических испытаний (метода Монте-Карло) [3], открывшего возможность моделирования случайных факторов, которыми изобилуют реальные системы, а также развитием электронной вычислительной техники, являющейся базой для проведения статистических экспериментов.  [c.190]

Метод статистических испытаний (метод Монте-Карло). М., Физматгиз, 1962.  [c.322]