Имитационные модели Монте Карло

Другими словами, вы можете использовать имитационную модель Монте-Карло (см. раздел 10—2).  [c.809]

Вторая альтернатива сводится к оценке ценности дисконтированных денежных потоков только при том сценарии, в котором фирма остается действующим предприятием, а затем к использованию вероятности того, что фирма будет действующим предприятием с этой ценностью. Глава 12 содержит пару подходов, способных помочь в использовании этой вероятности, они включают статистические пробиты и имитационные модели Монте-Карло. Если мы оценим вероятность выживания фирмы как действующего предприятия, то ее ценность можно определить следующим образом  [c.870]


При большом числе плановых задач по определению оптимального способа организации работ и использования оборудования применяют имитационные модели, воспроизводящие экономические и производственные условия с помощью ЭВМ. Из методов статического моделирования применяют метод Монте-Карло, сетевые модели и др.  [c.128]

На практике возникает большое число задач, где необходимо определить оптимальный способ организации работ и использования оборудования. В этом случае применяют имитационные модели, заключающиеся в имитации экономических и производственных условий на ЭВМ путем воспроизведения элементарных явлений и актов процесса в последовательности, содержащей реальные связи и взаимосвязи. Из методов статистического моделирования используются метод Монте-Карло, сетевые модели и др. Содержание и методика использования конкретных моделей рассматривается далее.  [c.19]


Для анализа стохастических моделей, особенно многокритериальных, в последнее время широко используется подход имитационного типа, получивший название метода Монте-Карло. Он состоит в следующем с помощью специально реализованного в ЭВМ генератора случайных чисел строят последовательность чисел г/ , г/2, . ., UN, которые в совокупности можно интерпретировать как последовательность реализаций случайной величины у. Выбирают конечное число вариантов управления xt, xz,. . ., хп. Рассчитывают значения W(xt, ys) для всех i = 1,. . ., п j = 1,. ... . ., N. Числа W(xi, z/j) (/ = 1,. . ., N) дают представление о распределении показателя W при управлении xt, т. е. о функции распределения FXi(r ), и могут использоваться для оценки этого  [c.155]

Определение оптимального уровня денежных средств. Смысловая нагрузка последнего блока определяется необходимостью нахождения компромисса между, с одной стороны, желанием обезопасить себя от ситуаций хронической нехватки денежных средств и, с другой стороны, желанием вложить свободные денежные средства в какое-то дело с целью получения дополнительного дохода. В мировой практике разработаны методы оптимизации остатка денежных средств, в основе которых заложены те же идеи, что и в методах оптимизации производственных запасов. Наибольшую известность получили модели Баумоля, Миллера — Орра, Стоуна и имитационное моделирование по методу Монте-Карло [Ковалев, 1999]. Суть данных моделей состоит в том, чтобы дать рекомендации о коридоре варьирования остатка денежных средств, выход за пределы которого предполагает либо конвертацию денежных средств в ликвидные ценные бумаги, либо обратную процедуру.  [c.375]


Получение характеристик систем массового обслуживания подобного класса возможно с помощью метода статистических испытаний — метода Монте-Карло, т.е. путем создания имитационной модели, на которой проигрывают различные ситуации, возникающие в процессе выполнения оперативного плана.  [c.232]

Наиболее сложным, трудоемким и дорогостоящим методом анализа рисков является метод Монте-Карло. Он, в основном, используется для анализа рисков крупных проектов в условиях недостаточного объема априорной информации. Этот метод заключается в построении имитационных моделей, позволяющих создать множество сценариев, согласующихся с заданными ограничениями на исходные переменные.  [c.281]

Анализ единичного риска проекта начинается с установления неопределенности, присущей денежным потокам проекта, которое может основываться и на простом высказывании мнений, и на сложных экономических и статистических исследованиях с использованием компьютерных моделей. Наиболее часто используют следующие методы анализа 1) анализ чувствительности 2) анализ сценариев 3) имитационное моделирование методом Монте-Карло.  [c.206]

Имитационное моделирование по методу Монте-Карло позволяет построить математическую модель для проекта с неопределенными значениями параметров и, зная вероятностные распределения параметров проекта, а также связь между изменениями параметров (корреляцию), получить распределение доходности проекта.  [c.11]

Метод Монте-Карло является методом формализованного описания неопределенности, используемым в наиболее сложных для прогнозирования проектах. Он основан на применении имитационных моделей, позволяющих создать множество сценариев, которые согласуются с заданными ограничениями на исходные переменные.  [c.270]

В западной практике используются и более современные, но более сложные модели. К ним относятся имитационные модели по методу Монте-Карло. Эти модели учитывают вероятность распределения чистых денежных потоков. Целевой остаток определяется с учетом этой вероятности, а также приемлемой вероятности дефицита денежных средств.  [c.318]

Итак, какими же математическими знаниями должен обладать человек, специализирующийся в имитационном моделировании Прежде всего, это общий курс высшей математики в объеме обычного технического вуза. Необходимы также знания по высшей алгебре, теории множеств, математической логике, теории вероятностей и математической статистике, динамическим рядам. Из специальных дисциплин необходимы знания метода статистических испытаний (Монте-Карло), теории массового обслуживания, теории систем и общего курса экономико-математических методов и моделей. Предполагается свободное владение компьютером в рамках общепринятых пакетов программ и желательно самостоятельное написание программы имитации на базе какого-либо языка моделирования. Вышеперечисленные требования — максимум того, что требуется от профессионального специалиста в области имитационного моделирования. Вместе с тем, эти знания не дадут нужного результата, если у человека не будет сформировано имитационное мышление и он будет увлекаться тем или иным аналитическим решением проблемы. Аналитическое (не имитационное) решение, пусть более красивое и эффектное, как правило, заведет моделирование объекта на тупиковый путь. Вместе с тем известны случаи, когда человек, не обладающий всей массой знаний, перечисленных выше, но правильно уловивший суть имитационного подхода, успешно руководил построением имитационных моделей своего объекта. Как правило, такие люди — хорошие управленцы и специалисты по данному объекту.  [c.7]

При имитационном моделировании применяется много математических схем конечные и вероятностные автоматы, системы массового обслуживания (СМО), агрегативные системы, системы, описываемые дифференциальными уравнениями и марковскими процессами, методы общей теории систем, а также специально сконструированные эвристические подходы для конкретных типов объектов моделирования. Применительно к экономическим объектам и процессам наиболее часто используются, на наш взгляд, математические схемы СМО, агрегативные системы, а также эвристические подходы. Кроме этого, отдельные элементы метода статистических испытаний или метода Монте-Карло, которые лежат в основе имитационного моделирования, применяются достаточно часто при расчете различных параметров для других типов моделей — эконометрических, моделей кривых роста и т.п. В данной главе будут рассмотрены имитационные модели СМО и агрегативные имитационные модели. Естественно, приведенные ниже математические схемы ни в коей мере не исчерпывают их перечень. Кроме того, часто при имитационном моделировании применяется сочетание различных математических подходов, поэтому дать весь перечень применяемых математических схем затруднительно, да и вряд ли целесообразно. Главное — наличие имитационного мышления при выборе тех или иных математических подходов.  [c.229]

Если в объекте моделирования входной сигнал преобразуется в определенный функционал, то необходимо иметь типовые функциональные блоки. Когда функционал имеет детерминированный характер, функциональный блок воспроизводит детерминированную функциональную зависимость. Если зависимость носит вероятностный характер, то блок должен воспроизводить случайную функцию. При этом следует указать, что способ получения заданных случайных зависимостей давно используется в статистическом моделировании (метод Монте-Карло) и может быть заимствован оттуда. В реальных моделях часто требуется не только воспроизводить случайную функцию, а применять эмпирические зависимости, т.е. использовать реальные данные в преобразователях и т.п. Гораздо легче в имитационных моделях реализовать блоки, имеющие теоретические распределения, так как их легко преобразовывать, меняя интенсивность или другие параметры распределений.  [c.286]

Метод Монте-Карло представляет собой расчетный численный способ решения исследовательских задач математического характера на основе моделирования случайных величин и формализованного описания неопределенности. Этот способ, называемый также методом статистических испытаний, на основе статистических данных и различного рода ограничений позволяет сформировать имитационные модели и создать множество сценариев реализации задач исследования и выбрать наиболее вероятный из них.  [c.121]

Составленные по методу Монте-Карло имитационные модели позволяют построить математическую модель, например проекта с неопределенными значениями параметров. Зная вероятностные распределения параметров проекта, а также корреляционную связь между изменениями параметров, можно получить распределение доходности проекта.  [c.122]

Для определения доверительного интервала времени и оценки надежности выполнения заказа может применяться имитационное моделирование (метод статистических испытаний или метод Монте-Карло), которое заключается в воспроизведении исследуемого процесса при помощи вероятностной математической модели. Одно такое воспроизведение функционирования системы называют реализацией или испытанием . Метод основан на многократных испытаниях построенной модели с последующей статистической обработкой полученных данных с целью определения числовых характеристик исследуемого процесса в виде статистических оценок его параметров.  [c.129]

Среди методов на основе анализа D F с углубленным подходом к неопределенности следует упомянуть имитационные методы, прежде всего анализ чувствительности и методы Монте-Карло. Самый простой из таких методов предполагает анализ чувствительности, когда все переменные корректируются по очереди, чтобы видеть их влияние на конечные стоимости D F. В методах Монте-Карло используется вероятностный подход. Так как вся информация, вовлеченная в принятие решения относительно ИС, высоко сомнительна, самое лучшее, что может быть сделано, это рассматривать вероятностные затраты и доходы, получая конечный результат в виде гистограммы значений NPV. В известных примерах Монте-Карло имитаций сразу все переменные в модели откорректированы согласно индивидуальным распределениям вероят-  [c.195]

Статистическое имитационное моделирование - имитационное моделирование, при котором воспроизводятся случайные явления. Случайные факторы при построении модели имитируются при помощи случайных чисел, формируемых ЭВМ. Статистическое имитационное моделирование базируется на численном статистическом методе решения математических задач, называемом методом Монте-Карло.  [c.12]

Имитационное моделирование, при котором воспроизводятся случайные явления, называется статистическим имитационным моделированием. Случайные факторы при построении компьютерной модели имитируются при помощи случайных чисел, формируемых ЭВМ. Таким образом, под статистическим имитационным моделированием понимают построение имитационной модели существующего или гипотетического (предполагаемого, разрабатываемого) объекта, учитывающей случайные явления, и проведение экспериментов на этой модели. Статистическое имитационное моделирование (СИМ) базируется на численном статистическом методе решения математическим задач, называемых методом Монте-Карло. Часто статистическое имитационное моделирование просто отождествляют с этим методом [14].  [c.87]

В некоторых имитационных моделях и исследованиях по методу Монте-Карло не выполняется предположение о биномиальном распределении. Например, бывает, что нужно оценить вероятность того, что произойдет некоторое событие. Так, скажем, в модели отказа оборудования нужно оценить вероятность того, что оборудование проработает дольше чем с единиц времени такие события имеют постоянную вероятность от опыта к опыту и независимы. Следовательно, можно воспользоваться биномиальной моделью  [c.137]

Методы управления каждой составляющей в структуре чистого оборотного капитала специфичны для этой составляющей, с использованием моделей Баумоля, Миллера-Орра, Стоуна, имитационных моделей по схеме Монте-Карло и др. [14]. Общее этих методов в том, что они определяют рациональные нормативы потребности в чистом оборотном капитале, применение которых в тактическом финансовом менеджменте минимизирует риски неплатежеспособности и недопустимого снижения рентабельности операций. Часто эти нормативы связывают с периодом оборот различных типов оборотных активов.  [c.30]

Первоначальный капитал рассматривается произвольно и учитывается лишь пороговое значение критерия выбора. Уравнение (V.23) дает в этом случае вероятность того, что программа в конечном счете будет рентабельной при условии, что она будет завершена. Очевидным ограничением для уравнений (V.22) и (V.23) является то. что они не позволяют прекращать программу, когда ассигнования на бурение снижаются до величины, меньшей стоимости бурения скважины х. Чтобы остаться в рамках требований ГБИ и самофинансирования, капиталовложения всегда должны быть больше величины х. Кроме того, т открытий должны быть такими по размеру, чтобы по крайней мере поддержать капиталовложения на уровне, достаточном для бурения следующих скважин. Этот случай реализации фактического GR можно моделировать математически или применять метод Монте-Карло. Фактически процесс определения того, снизится ли капитал после бурения очередной скважины ниже стоимости бурения последующей скважины, очень прост, и его можно реализовать с помощью простой имитационной модели (рис. V.23).  [c.540]

Мы говорили о том, что любой прогноз потоков денежных средств строится на допущениях относительно будущих инвестиций и стратегии производства. Вернемся к имитационной модели Монте-Карло, которую мы построили для компании "Драндулет". Какая стратегия лежала в ее основе Мы не знаем. "Драндулет" неизбежно столкнется с необходимостью принятия решений по вопросам ценообразования, производства, расширения и прекращения бизнеса, но допущения, сделанные создателем модели, касающиеся этих решений, сокрыты в уравнениях модели. В какой-то момент создатель модели может четко сформулировать будущую стратегию для "Драндулета", но, очевидно, она не будет оптимальной. Будет сделано несколько прогонов модели, прежде чем почти все пойдет не так, как надо, но к этому времени в реальной жизни компания "Драндулет" уже остановила бы проект, чтобы уменьшить свои потери. А модель продолжает воспроизводить период за периодом, невзирая на истощение денежных ресурсов "Друндулета", но наиболее неблагоприятные результаты, полученные в имитационной модели, никогда не встречаются в реальной жизни.  [c.255]

Для анализа изменчивости (дисперсии) приведенной стоимости проекта в отсутствие гибкости мы советуем пользоваться имитационной моделью Монте-Карло, которая, на наш взгляд, позволяет наилучшим образом совместить разнообразные риски и установить взаимосвязи между ними. В другой ситуации из нашего опыта важным источником неопределенно-ста служила цена конечного продукта, но н менее значимую роль играла также цена основного производственного ресурса. Более того, между этими двумл типами рисков наблюдалась корреляция. Мы тогда взяли прошлые данные, характеризующие разброс этих цен (спред), и ввели их в модель Монте-Карло. Использование спреда позволило свести два источника неопределенности к одному и одновременно учесть корреляцию между ценой конечного продукта и ценой ресурса.  [c.463]

МОДЕЛЬ ИМИТАЦИОННАЯ (simulation model) — модель, предназначенная для анализа воздействия на к -л систему изменений в ее структуре и/или внеш условий функционирования (ретроспективный анализ или определение спектра допустимых сценариев будущего развития) При гаком подходе принадлежность модели к классу М и определяется не объектом моделирования, методами построения и структурой, а характером ее использования (используется для получения ответов на вопрос "Что, если ") См также Модегирование имитационное, Метод Монте-Карло  [c.141]

Имитационное моделирование по методу Монте-Карло (Monte- arlo Simulation) позволяет построить математическую модель для проекта с неопределенными значениями параметров, и, зная вероятностные распределения параметров проекта, а также связь между изменениями параметров (корреляцию), получить распределение доходности проекта. Блок-схема, представленная на рис. 7.6, отражает укрупненную схему работы с моделью.  [c.242]

Нами построены 3 модели для расчета показателей надежности комплекса дожимных станций ГДП. Первая модель использует лишь случайные величины, вторая - аппарат марковских цепей и третья - метод Монте-Карло. Отпишем первые две, опустив третью, так идеи имитационного моделирования стандартны.  [c.115]

Имитационное моделирование является относительно новым и быстро развивающимся методом исследования поведения систем управления. Этот метод состоит в том, что с помощью ЭВМ воспроизводится поведение исследуемой системы управления, а исследователь-системотехник, управляя ходом процесса имитации и обозревая получаемые результаты, делает вывод о ее свойствах и качестве поведения. Поэтому под имитацией следует понимать численный метод проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение системы управления для определения интересующих нас функциональных характеристик. Появление имитационного моделирования и превращение его в эффективное средство анализа сложных систем было, с одной стороны, обусловлено потребностями практики, а с другой стороны, обеспечено развитием метода статистических испытаний (метода Монте-Карло) [3], открывшего возможность моделирования случайных факторов, которыми изобилуют реальные системы, а также развитием электронной вычислительной техники, являющейся базой для проведения статистических экспериментов.  [c.190]

Место имитационного моделирования в составе экономико-математических методов. 2.Мысленные и машинные модели социально экономических систем. 3.Социально-экономические процессы как объекты моделирования. 4. Структура и классификация имитационных моделей. 5.Основные этапы процесса имитации. 6.Определение системы, постановка задачи, формулирование модели и оценка ее адекватности. 7.Экспериментирование с использованием ИМ, механизм регламентации, интерпретация и реализация результатов. 8.Организационные аспекты имитационного моделирования. 9.Основные компоненты динамической мировой модели Форрестера. 10.Концепция петля обратной связи . И.Структура модели мировой системы. 12. Каноническая модель предприятия. 13.Моделирование затрат предприятия. 14.Моделирование налогообложения. 15.Использование имитационного моделирования для планирования. 16.Содержание процессов стратегического и тактического планирования. 17.Основные модули системы поддержки принятия решений. 18.Сущность статистического ИМ. 19.Метод Монте-Карло. 20.Идентификация закона распределения. 21.Классификация систем МО. 22.Сущность метода экспериментальной оптимизации. 23.Формирование концептуальной модели. 24.Принципы выбора критерия оптимальности, разработка алгоритма оптимизации. 25.Эвристические алгоритмы поиска решений. 26.Управленческие имитационные игры, их природа и сущность. 27. Структура и порядок разработки управленческих имитационных игр.  [c.121]

Использование в практике управления риском различных моделей, таких как модель стоимости капитальных активов, модель Value-at-risk, методов количественного анализа, например анализ сценариев и имитационное моделирование рисков по методу Монте-Карло, стресс-тестирование, связано с созданием или приобретением дорогостоящих специальных программных продуктов и привлечением высококвалифицированных специалистов в области математических методов анализа. Следует уделить внимание подготовке подобных специалистов в рамках предприятия.  [c.584]

Инвестиционная оценка Изд.2 (2004) -- [ c.1067 ]