Оценки метода наименьших квадратов параметров модели авторегрессии в широком классе случаев (а именно при условии независимости, одинаковой распределенное и конечности дисперсий участвующих в них случайных возмущений е,, см. (12.2)) являются состоятельными. Асимптотические распределения оценок в устойчивом случае всегда являются нормальными, причем их дисперсия (ковариационная матрица) не зависит от дисперсии возмущений ег В общем случае (т. е. в ситуации, когда некоторые из корней характеристического уравнения (12.17) по модулю превосходят единицу) асимптотическое распределение оценок определяется распределением случайных возмущений е . Математическая модель авторегрессии /n-го порядка xt = [c.371]
Параметры уравнения определяются методом наименьших квадратов. Этот метод не является, конечно, единственным способом определения искомых параметров производственной функции (возможен, например, метод максимального правдоподобия или метод экспертных оценок). Однако метод наименьших квадратов наиболее разработан и, пожалуй, самый обоснованный из математико-стати-стических приемов обработки исходной информации. С помощью этого метода и решена наша конкретная задача. [c.85]
Для оценки параметров функции широко используют такие методы, как метод наименьших квадратов и его модификации, метод экспоненциального сглаживания, метод вероятностного моделирования и метод адаптивного сглаживания. [c.22]
Оценки параметров уравнения регрессии с помощью метода наименьших квадратов в случае множественной регрессии удобнее представить в матричном виде. [c.325]
Метод экспоненциального сглаживания дает более точное приближение к исходному ряду, улавливая колебания цен. На рис. 9.4 приведены графики исходного и сглаженного ряда с помощью экспоненциального сглаживания. Динамическим рядам цен акций (как и ряду других фондовых инструментов) присущ ряд особенностей, которые могут определять специфику их анализа. Прежде всего это достаточно частые случаи резкого изменения тенденции цены (например, повышательный тренд, так называемый бычий, сменяется его противоположностью, так называемым медвежьим трендом). В этой ситуации возможно использование аналитической аппроксимации. Для оценки параметров уравнения, максимально точно описывающего динамику цен акций, используется метод наименьших квадратов, суть которого состоит в том, что подбирается такая аппроксимирующая кривая, при которой достигается минимум квадратов отклонений исходного ряда от теоретической кривой. [c.372]
Оценка параметров уравнений регрессии (а0, о1 и о2 — в уравнении параболы второго порядка) осуществляется методом наименьших квадратов, в основе которого лежит предположение о независимости наблюдений исследуемой совокупности. [c.115]
До сих пор мы использовали оценки параметров, полученные методом наименьших квадратов. Рассмотрим еще один важный метод получения оценок, широко используемый в эконометрике, — метод максимального правдоподобия. [c.63]
Для оценки вектора неизвестных параметров р применим метод наименьших квадратов. Так как произведение транспонированной матрицы е" на саму матрицу е [c.83]
В силу того, что оценки bj, полученные методом наименьших квадратов, являются несмещенными оценками параметров Р7, [c.92]
Если модель нелинейна по переменным, то введением новых переменных ее можно свести к линейной модели, для оценки параметров которой использовать обычный метод наименьших квадратов. [c.125]
Решение. От исходных значений переменных K/L и Y/L перейдем к их натуральным логарифмам и, используя метод наименьших квадратов, рассчитаем оценки параметров модели (5.19)1. Получим [c.128]
При выполнении предпосылки 5 о нормальном законе распределения вектора возмущений е можно убедиться в том, что оценка Ь обобщенного метода наименьших квадратов для параметра р при известной матрице Q совпадает с его оценкой, полученной методом максимального правдоподобия. [c.154]
В заключение отметим, что для применения обобщенного метода наименьших квадратов необходимо знание ковариационной матрицы вектора возмущений Q, что встречается крайне редко в практике эконометрического моделирования. Если же считать все я(л+1)/2 элементов симметричной ковариационной матрицы Q неизвестными параметрами обобщенной модели (в дополнении к (р+l) параметрам (3/), то общее число параметров значительно превысит число наблюдений я, что сделает оценку этих параметров неразрешимой задачей. Поэтому для практической реализации обобщенного метода наименьших квадратов необходимо вводить дополнительные условия на структуру матрицы Q. Так мы приходим к практически реализуемому (или доступному) обобщенному методу наименьших квадратов, рассматриваемому в 7.11. [c.155]
Предположим, что для оценки регрессионной модели Y по Х, .., Х мы применили обычный метод наименьших квадратов и нашли оценку b параметра р по формуле (4.8). Тогда с учетом (4.12) будем иметь [c.156]
Однако, даже если с помощью взвешенного метода наименьших квадратов не удается устранить гетероскедастичность, ковариационная матрица ь оценок параметров регрессии (3 [c.167]
Для получения наиболее эффективных оценок параметра р в такой модели, если параметр р известен, можно применить обобщенный метод наименьших квадратов. [c.183]
Очевидно, что несостоятельность оценки (8.20) тем больше, чем сильнее автокорреляция ошибок е. На практике, однако, часто выполняется условие р у. В этом случае предел оценки наименьших квадратов будет близок к истинному значению параметра, хотя и не равен ему. [c.202]
Уравнение (8.39) представляет собой уравнение ADL порядка (0,1) и может быть оценено нелинейным методом наименьших квадратов после обратного преобразования Койка. Заметим, впрочем, что состоятельные оценки параметров уравнения (8.39) можно получить и обычным методом наименьших квадратов, так как в уравнении объясняющая переменная Yf не коррелирует со значением случайного члена е в момент времени t (см. 8.1). [c.207]
Как мы знаем, эти оценки значительно отличаются от истинных значений параметров. Так как в рассматриваемом примере значения Р и р вполне сравнимы, мы должны ожидать, что метод наименьших квадратов приведет к существенной несостоятельности оценок, что мы и наблюдаем в действительности. [c.214]
Найти оценки параметра (3, применяя к уравнению (8.67) обычный метод наименьших квадратов и метод инструментальных переменных. [c.223]
Наборы переменных Х и Xi могут быть произвольными. Параметры р, вообще говоря, векторные. Если применить к уравнениям (9.3), (9.4) обычный метод наименьших квадратов, то, как показано в главе 8, получатся несостоятельные оценки параметров а, р, у. Таким образом, оценивание систем одновременных уравнений требует специальных методов, которым и посвящена настоящая глава. [c.226]
Для дальнейшего упрощения будем считать, что переменные Y отцентрированы, т. е. а, = 0. (При практическом применении метода это абсолютно несущественно.) Применив к (9.5) обычный метод наименьших квадратов, получим оценки параметров Ь, с. [c.227]
Структурный параметр называется неидентифицируемым, если его значение невозможно получить, даже зная точные значения параметров приведенной формы. Наконец, параметр называется сверхидентифицируемым, если косвенный метод наименьших квадратов дает несколько различных его оценок. [c.231]
В случае равенства коэффициентов Y нулю истинное значение параметра р одно и то же, но значения оценок Ь, полученных с помощью метода наименьших квадратов из моделей (10.1), (10.2) будут различными. Следует предпочесть ту оценку, которая ближе к истинному значению. Такой характеристикой близости является средний квадрат отклонения [c.244]
Пусть b, g — оценки параметров р и у, полученные с помощью метода наименьших квадратов из модели (10.1) Р2 — оценка р из модели (10.2). Применение обычных формул (4.8) дает следующий вид этих оценок [c.244]
В выражениях 7.2—7.4 вектор-параметр а определяется как оценка широко известного математико-статистического метода наименьших квадратов применительно к уравнениям так называемой простой регрессии, в которой содержится единственная независимая переменная. [c.144]
Исходя из уравнения (72) производится оценка параметров -Г (ю), Ft(ao) и С методом наименьших квадратов на основе статистики исчерпания открытий месторождений i-то класса. [c.180]
Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических ух минимальна, т.е. [c.5]
Отметим, что оценки максимального правдоподобия параметров а, 6 совпадают с оценками метода наименьших квадратов OML = SOLS, ML OLS- Это легко видеть из того, что уравнения (2.37а) и (2.376) совпадают с соответствующими уравнениями метода наименьших квадратов (2.2). Оценка максимального правдоподобия для <т2 не совпадает с
Эта оценка отклонения также широко используется в науке она называется равномерной, или чебышевской метрикой. Очевидное преимущество оценки (5.3) над оценкой (5.4) состоит в том, что для функции, линейной относительно параметров, решить задачу минимизации отклонения (5.4) значительно сложнее, чем для отклонения (5.3). Существуют, однако, н более глубокие причины, способствующие широкому использованию метода наименьших квадратов. До сих пор мы придерживались первой интерпретации природы отклонения теоретических значений У) от наблюдавшихся г/и) при любых значениях параметров считалось, что простая функция (5.2) аппроксимирует более сложную истинную производственную функцию. Если же перейти ко второй интерпретации, то при выполнении предположения о нормальном распределении возмущения е и независимости возмущений в разных наблюдениях метод наименьших квадратов дает наилучшие (в определенном смысле) оценки неизвестных параметров. [c.112]
Для получения оценок параметров модели в большинстве случаев используют метод наименьших общих квадратов, основанный на минимизации среднеквадратической ошибки модели и его модификации5. [c.89]
Иногда как условие корреляционного анализа выдвигают необходимость подчинения распределения совокупности по результативному и факторным признакам нормальному закону распределения вероятностей. Это условие связано с применением метода наименьших квадратов при расчете параметров корреляции только при нормальном распределении метод наименьших квадратов дает оценку параметров, отвечающую принципам максимального правдоподобия. На практике эта предпосылка чаще всего выполняется приближенно, но и тогда метод наименьших квадратов дает неплохие результаты1. [c.231]
Итак, мы доказали, что оцека Ь метода наименьших квадратов является наилучшей линейной оценкой параметра р. Перейдем теперь к оценке еще одного параметра — дисперсии возмущений ст2. [c.95]
Другой метод устранения или уменьшения мультиколлинеар-ности заключается в переходе от несмещенных оценок, определенных по методу наименьших квадратов, к смещенным оценкам, обладающим, однако, меньшим рассеянием относительно оцениваемого параметра, т. е. меньшим математическим ожиданием квадрата отклонения оценки fy от параметра ру или М (bj— p/)2. [c.110]
При применении метода наименьших квадратов для оценки параметров экспоненциальной, логистической функций или функции Гомперца возникают сложности с решением получаемой системы нормальных уравнений, поэтому предварительно, до получения соответствующей системы, прибегают к некоторым преобразованиям этих функций (например, логарифмированию и др.) (см. 5.5). [c.143]
Оценка параметров регрессионной модели взвешенным методом наименьших квадратов реализована в большинстве компьютерных пакетов. Покажем ее проведение при использовании пакета E onometri Views . [c.165]
Если удастся построить АКМ4-модель для ряда остатков, то можно получить эффективные оценки параметра р, а также несмещенные и состоятельные оценки дисперсий р с помощью обобщенного метода наименьших квадратов. Мы рассмотрим эту процедуру на простейшей (и в то же время наиболее часто встречающейся) авторегрессионной модели первого порядка. [c.181]
Применим к уравнению (7.42) обычный метод наименьших квадратов, включая р в число оцениваемых параметров. Получим оценки г и 0 величин р и -pp. Тогда оценкой Дарбина является величина [c.184]
Процедура Кохрейна— Оркатта. Указанная процедура заключается в том, что, получив методом наименьших квадратов оценочное значение р параметра р, от наблюдений yt и t переходят к наблюдениям w,, zt по формулам (7.41) и, получив оценку параметра Р,, образуют новый вектор остатков [c.185]
Описанная процедура называется двухшаговым методом наименьших квадратов. По сути метод наименьших квадратов применяется здесь дважды сначала для получения набора регрессо-ров X, затем для получения оценок параметра р. [c.199]
Заметим, что переменные X не коррелируют с ошибками Е, так что, применив обратное преобразование Койка, мы решили проблему коррелированности регрессоров со случайными членами. Однако применение обычного метода наименьших квадратов к модели (8.32) оказывается на практике невозможным из-за бесконечно большого количества регрессоров. Разумеется, в силу того, что коэффициенты входящего в модель ряда убывают в геометрической прогрессии, и, стало быть, сам ряд быстро сходится, можно было бы ограничиться сравнительно небольшим числом лагов. Однако и в этом случае мы столкнулись бы по крайней мере с двумя трудно решаемыми проблемами. Во-первых, возникла бы сильная мультиколлинеарность, так как естественно ожидать, что лаговые переменные сильно коррели-рованы. Во-вторых, уравнение оказалось бы неидентифицируемым. В модели на самом деле присутствует всего четыре параметра. Между тем как, взяв всего лишь три лага, мы бы получили оценки пяти параметров. [c.203]
Использование AR H- и СЛЛСЯ-моделей оказывается в ряде случаев экономико-математического моделирования (например, процессов инфляции и внешней торговли, механизмов формирования нормы процента и т. п.) более адекватным действительности, что позволяет строить более эффективные оценки параметров рассматриваемых моделей по сравнению с оценками, полученными обычным и даже обобщенным методом наименьших квадратов. [c.217]
Оказывается, если ряды xt и yt на самом деле являются коинтегрируемыми, то состоятельная оценка параметра (3 получается как оценка обычного метода наименьших квадратов, примененного к модели [c.221]