Проверка гипотез коэффициента регрессии

Коэффициенты регрессии, как и коэффициенты корреляции, — случайные величины, зависящие от объема выборки. Поэтому для проверки надежности коэффициента регрессии выдвигается гипотеза о том, что коэффициент регрессии в генеральной совокупности равен нулю (нулевая гипотеза), т. е. связь, установленная по данным выборки, в генеральной совокупности отсутствует. Простейшая схема проверки этой гипотезы при линейной форме связи сводится к построению доверительного интервала для каждого коэффициента регрессии. Если граничные значения данного коэффициента регрессии в этом интервале имеют противоположные знаки, то принятая гипотеза подтверждается и тогда соответствующий этому параметру уравнения фактор исключается из модели. Для нелинейной формы связи имеются другие методы оценки значимости факторов  [c.18]


Для проверки этих гипотез нужно определить /-критерий для соответствующего коэффициента регрессии. Эти /-критерии рассчитывают делением коэффициентов регрессии на их стандартные ошибки  [c.275]

В методике изложены общие положения описаны вычислительный метод получения оценок коэффициентов регрессии, алгоритм вычисления вектора оценок коэффициентов регрессии, обобщенная обратная матрица и остаточная сумма квадратов отклонений, алгоритм проверки гипотез об отличии коэффициентов регрессии от нуля, оценивания дисперсии оценок коэффициентов регрессии.  [c.27]

Если при решении той или иной задачи можно ограничиться линейным приближением, то полный факторный эксперимент типа 2 также оказывается недостаточно эффективным, особенно при большом k. При линейном росте числа независимых переменных число опытов для полного факторного эксперимента растет по показательной функции, в результате слишком много степеней свободы остается на проверку гипотезы адекватности. Например, при k = 2, при линейном приближении, для проверки гипотезы адекватности используется только одна степень свободы, тогда как при k = fj — уже 57 степеней свободы. Правда, при постановке таких больших экспериментов резко снижается ошибка в определении коэффициентов регрессии, так как при факторном планировании все опыты используются для оценки каждого из коэффициентов регрессии. Но это обстоятельство далеко не всегда является достаточным основанием для постановки большого числа опытов. Часто, особенно на первых этапах исследования, бывает нужно получить некоторую, хотя бы и не очень точную, информацию о процессе при минимальной затрате труда на проведение экспериментов. Если можно ограничиться линейным приближением, то число опытов можно резко снизить, используя для планирования так называемые дробные реплики от полного факторного эксперимента [1].  [c.215]


Эмпирическое уравнение регрессии определяется на основе конечного числа статистических данных. Поэтому коэффициенты эмпирического уравнения регрессии являются случайными величинами, изменяющимися от выборки к выборке. При проведении статистического анализа перед исследователем зачастую возникает необходимость сравнения эмпирических коэффициентов регрессии bo и bi с некоторыми теоретически ожидаемыми значениями р0 и pi этих коэффициентов. Данный анализ осуществляется по схеме статистической проверки гипотез, которая подробно проанализирована в разделе 3.4. Для проверки гипотезы  [c.120]

Опишите схему проверки гипотез о величинах коэффициентов регрессии.  [c.135]

Другим важным направлением использования статистики Фишера является проверка гипотезы о равенстве нулю не всех коэффициентов регрессии одновременно, а только некоторой части этих коэффициентов. Данное использование статистики F позволяет оценить обоснованность исключения или добавления в уравнение регрессии некоторых наборов объясняющих переменных, что особенно важно при совершенствовании линейной регрессионной модели.  [c.159]

Увеличение дисперсии оценок может привести к ошибочным результатам проверки гипотез относительно значений коэффициентов регрессии, расширению интервальных оценок.  [c.195]

Отметим, что в случае парной регрессии проверка нулевой гипотезы для 1 - статистики коэффициента регрессии равносильна проверке нулевой гипотезы для F-статистики (и, соответственно, показателя Я2). В этом случае F-статистика равна квадрату /-статистики. В случае парной регрессии статистическая значимость величин Л2 и /-статистики коэффициента регрессии определяется коррелирован-ностью переменных х и у. Самостоятельную важность показатель Л2 приобретает в случае множественной линейной регрессии.  [c.318]


Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это особенно важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных, или же, наоборот, включения их в это число.  [c.318]

По таблице распределения Фишера с (2 57) степенями свободы находим, что критическое значение Нравно 3,16 при 5 %-ном уровне значимости и 5,0 при 1 %-ном. Таким образом, гипотеза о равенстве нулю одновременно всех коэффициентов регрессии заведомо отвергается (что, впрочем, ясно и из того, что коэффициент при GNP уже до этого получился значимым). Итак, даже небольшая величина /Р = 0,29 при довольно большом числе наблюдений дала значимую величину F-статистики. В то же время если величина R2 рассматривается как самостоятельный критерий качества регрессии (а не только как средство проверки нулевой гипотезы для всех коэффициентов одновременно), позволяющий оценить его в сравнении с качеством линии у = у, то значение R2 = 0,29 вряд ли можно считать хорошим. Это говорит о необходимости дальнейшего поиска объясняющих переменных для показателя RNX.  [c.337]

Статистические свойства МНК-оценок параметров регрессии. Проверка гипотезы b = bo. Доверительные интервалы для коэффициентов регрессии  [c.46]

Если регрессия оказывается значимой, то можно продолжить анализ, используя t-тесты для отдельных коэффициентов регрессии в этом случае пытаются выяснить, насколько значимой является влияние той или иной переменной j на параметр у при условии, что все другие факторы Xk остаются неизменными. Построение доверительных интервалов и проверка гипотез на адекватность для отдельного коэффициента регрессии основывается на определении стандартной ошибки. Каждый коэффициент регрессии имеет свою стандартную ошибку Sb, Sb2,..., Sbk.  [c.55]

Проверка значимости включает проверку значимости общего уравнения регрессии и конкретных частных коэффициентов регрессии, гипотеза для проверки общего уравнения гласит, что коэффициент множественной детерминации для генеральной совокупности равен нулю  [c.664]

Если нулевую гипотезу отклоняют, то один или несколько частных коэффициентов регрессии в совокупности имеют значение, отличное от нуля. Чтобы определить, какие из конкретных коэффициентов Отличны от нуля, выполним дополнительные проверки. Проверку значимости Д выполним тем же способом, что и в случае парной регрессии, т.е. используя г статистику. Значимость частного коэффициента для переменной — погодные условия — можно выполнить с помощью уравнения 0.5887  [c.664]

Рассмотренные направления проверки статистических гипотез охватывают лишь важнейшие из них. Процедура испытания статистических гипотез применяется для определения того, случайно или нет полученное значение коэффициента корреляции, коэффициента вариации и т. д., случайны или нет различия в значениях показателей (медиан, коэффициентов корреляции, регрессии и т.д.) в разных  [c.217]

Вероятностная оценка параметров корреляции производится по общим правилам проверки статистических гипотез, разработанным математической статистикой, в частности путем сравнения оцениваемой величины со средней случайной ошибкой оценки. Для коэффициента парной регрессии Ь средняя ошибка оценки вычисляется как  [c.247]

Пользуясь планированием, предоставленным в табл. 4, можно определить свободный член bo, три коэффициента регрессии при линейных членах Ъ, Ъ Ьз, три коэффициента при парных произведениях Ъ ч, Ъ , Ьзз, и один коэффициент регрессии при тройном произведении bj23- Если ограничиться линейным приближением, то останется четыре степени свободы для проверки гипотезы адекватности.  [c.214]

После оценки индивидуальной статистической значимости каждого из коэффициентов регрессии обычно анализируется совокупная значимость коэффициентов. Такой анализ осуществляется на основе проверки гипотезы об общей значимости - гипотезы об одновремен-  [c.156]

При анализе временных рядов часто приходится учитывать статистическую зависимость наблюдений в разные моменты времени. Иными словами, для многих временных рядов предположение о некоррелированности ошибок не выполняется. В этом разделе мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка (точное определение будет дано ниже). Как было показано ранее (глава 5), применение обычного метода наименьших квадратов к этой системе дает несмещенные и состоятельные оценки параметров, однако можно показать (см., например, Johnston and DiNar-do, 1997), что получаемая при этом оценка дисперсии оказывается смещенной вниз, что может отрицательно сказаться при проверке гипотез о значимости коэффициентов. Образно говоря, МНК рисует более оптимистичную картину регрессии, чем есть на самом деле.  [c.184]

Для проверки существования AR H необходимо возвести в квадрат ошибки из первоначального уравнения условной средней. Этот ряд квадратов регрессируется по константе и прошлым значениям квадратов с лагом р. Критерием является Т R2, где Т — размер выборки и R2 — коэффициент множественной регрессии из уравнения регрессии квадратов ошибок. Этот критерий подчиняется х2 РаспРеДелению. Число степеней свободы равно числу временных лагов в регрессии. Если значение критерия больше критического значения из таблиц х2, то нулевая гипотеза о том, что AR H не присутствует, отвергается.  [c.356]

Используемая статистика Fq+l формально совпадает со статистикой для проверки значимости соответствующего регрессионного коэффициента в обычной задаче регрессии. Поэтому в качестве значения для Ръкп, как правило, выбирают классические уровни йачимости (5, 10, 15%), соответствующие F-распределению с 1 и (я — q — 2) степенями свободы. Однако величина Fq+i в пошаговой процедуре на самом деле не подчиняется -распределению с соответствующим числом степеней свободы, поскольку проверяется гипотеза о равенстве нулю максимального по абсолютной величине коэффициента частной корреляции из р-—.q коэффициентов частной корреляции для переменных, не входящих в X (q). Неизвестно поэтому, какому уровню значимости соответствует выбранное значение  [c.288]

Необходимо несколько более подробно остановиться на методике эмпирической проверки концепций конвергенции. Наиболее часто используемым статистическим методом для проверки абсолютной Дконвергенции является регрессия темпа роста ВВП, среднего или накопленного за рассматриваемый период, на константу и логарифм начального ВВП на душу населения (на основе одномоментного среза межобъектных данных). Если коэффициент при объясняющей переменной статистически значим и имеет отрицательный знак, гипотеза абсолютной Дконвергенции не отвергается.  [c.36]

Эконометрика (2002) -- [ c.0 ]