Опцион-пут арифметический

Необходимо изменить модель таким образом, чтобы она выражала арифметическое математическое ожидание на дату истечения срока опциона как следующую величину  [c.162]


Уравнение (5.11) не учитывает разницу между фондовыми опционами и товарными опционами. Согласно общепринятому подходу, в цену фондового опциона включается доход по простой бескупонной облигации, которая будет погашена в момент истечения срока опциона и номинал которой равен цене исполнения. Опционы на товарные фьючерсы, как считается, имеют процентную ставку 0. Мы же не учитываем это обстоятельство. Если ценная бумага и товар имеют абсолютно одинаковое распределение ожидаемых результатов, т.е. их арифметические математические ожидания равны, то разумный инвестор выберет более дешевый инструмент. Эту ситуацию хорошо иллюстрирует пример, когда вы рассматриваете покупку одного из двух одинаковых домов, и один из них оценен выше только потому, что продавец платил более высокую процентную ставку по ипотечному кредиту  [c.162]


Когда мы используем распределение, которое основано на значениях арифметического математического ожидания базового инструмента на дату истечения и значение этого ожидания отличается от текущей стоимости базового инструмента, мы должны вычесть разность (ожидание - текущая стоимость) из внутренней стоимости опциона и приравнять нулю значения меньше нуля. Таким образом, для любой формы распределения уравнение (5.11) дает нам арифметическое математическое ожидание опциона на дату истечения, при условии, что арифметическое математическое ожидание по базовому инструменту равно его текущей цене (то есть направленное движение цены базового инструмента не предполагается).  [c.165]

Теперь у нас есть математический метод, с помощью которого можно выходить из позиции по опциону и покупать опцион при положительном математическом ожидании. Если мы выйдем из позиции в день, когда среднее геометрическое максимально и оно больше 1,0, то следует покупать число контрактов, исходя из оптимального f, которое соответствует наивысшему среднему геометрическому. Математическое ожидание, о котором мы говорим, — это геометрическое ожидание. Другими словами, среднее геометрическое (минус 1,0) является математическим ожиданием, когда вы реинвестируете прибыли (арифметическое положительное математическое ожидание будет, конечно же, выше, чем геометрическое).  [c.169]

Мы можем определить и другие побочные продукты, например, геометрическое математическое ожидание (среднее геометрическое минус 1). Если мы возьмем наибольший возможный проигрыш (стоимость самого опциона), разделим его на оптимальное f и умножим на геометрическое математическое ожидание, то получим среднюю геометрическую сделку. Как вы уже заметили, при использовании метода оптимального f в торговле опционами появляется еще один побочный продукт — оптимальная дата выхода. Мы рассматривали позиции по опционам при отсутствии направленного движения цены базового инструмента. Для указанной даты выхода точки, смещенные на 3 стандартных отклонения выше и ниже, рассчитываются из текущей цены, таким образом, мы ничего не знаем о будущем направлении цены базового инструмента. В соответствии с математическими моделями ценообразования мы не получим положительное арифметическое математическое ожидание, если будем удерживать позицию по опциону до срока истечения. Однако, как мы уже видели, можно достичь положительного геометрического математического ожидания, если закрыть позицию в определенный день до срока истечения.  [c.170]


Таким образом, вы получаете положительное математическое ожидание, но на основе билета за 1,50 доллара, а не за 2 доллара. Та же аналогия применима и к опционам, позиция по которым в настоящий момент немного убыточна, но имеет положительное математическое ожидание на основе новой цены. Вы должны использовать другое оптимальное f для новой цены, регулируя текущую позицию (если это необходимо), и закрывать ее, исходя из новой оптимальной даты выхода. Таким образом, вы используете последнюю ценовую информацию о базовом инструменте, что иногда может заставить вас удерживать позицию до истечения срока опциона. Возможность получения положительного математического ожидания при работе с опционами, которые теоретически справедливо оценены, сначала может показаться парадоксом или просто шарлатанством. Мы знаем, что теоретические цены опционов, найденные с помощью моделей, не позволяют получить положительное математическое ожидание (арифметическое) ни покупателю, ни продавцу. Модели теоретически справедливы с поправкой если удерживаются до истечения срока . Именно эта отсутствующая поправка позволяет опциону быть справедливо оцененным согласно моделям и все-таки иметь положительное ожидание. Помните, что цена опциона уменьшается со скоростью квадратного корня времени, оставшегося до истечения срока. Таким образом, после первого дня покупки опциона его премия должна упасть в меньшей степени, чем в последующие дни. Рассмотрим уравнения (5.17а) и (5.176) для цен, соответствующих смещению на 4- X и - X стандартных величин по истечении времени Т. Окно цен каждый день расширяется, но все медленнее и медленнее, в первый день скорость расширения максимальна. Таким образом, в первый день падение премии по опциону будет минимальным, а окно X стандартных отклонений будет расширяться быстрее всего. Чем меньше времени пройдет, тем с большей вероятностью мы будем иметь положительное ожидание по длинной позиции опциона, и чем шире окно X стандартных отклонений, тем вероятнее, что мы будем иметь положительное ожидание, так как убыток ограничен ценой опциона, а возможная прибыль не ограничена. Между окном X стандартных отклонений, которое с каждым днем становится все шире и шире (хотя со все более медленной скоростью), и премией опциона (падение которой с каждым днем происходит все быстрее и быстрее) происходит перетягивание каната . В первый день математическое ожидание максимально, хотя оно может и не быть положительным. Другими словами, математическое ожидание (арифметическое и геометрическое) самое большое после того, как вы продержали опцион 1 день (оно в действительности самое большое в тот момент, когда вы приобретаете опцион, и далее постепенно понижается, но мы рассматриваем дискретные величины). Каждый последующий день ожидание понижается, но все медленнее и медленнее. Следующая таблица иллюстрирует понижение ожидания по длинной позиции опциона. Этот пример уже упоминался в данной главе. Колл-опцион имеет цену исполнения 100, базовый инструмент стоит также 100 дата истечения — 911220. Волатильность составляет 20%, а сегодняшняя дата 911104. Мы используем формулу товарных опционов Блэка (Н определяется из уравнения (5.07), R = 5%) и 260,8875-дневный год. Возьмем 8 стандартных отклонений для расчета оптимального f, а минимальный шаг тика примем равным 0,1.  [c.171]

Несмотря на всю сложность, уравнение (5.25) все-таки не решает проблему ненулевого коэффициента линейной корреляции между ценами двух компонентов. Как видите, определение оптимальных весов компонентов является довольно сложной задачей В следующих нескольких главах вы увидите, как найти правильные веса для каждой составляющей позиции, будь то акция, товар, опцион или любой другой инструмент, независимо от связи (причинная, случайная или корреляционная). Входные данные, которые нам потребуются, следующие (1) коэффициенты корреляции средних дневных HPR позиций в портфеле на основе 1 контракта, (2) арифметические среднее HPR и стандартные отклонения HPR.  [c.180]

Уравнения (5.14) и (5.20) показывают, как находить HPR для длинных и коротких позиций по опционам. Уравнение (5.18) показывает, как находить среднее геометрическое. Мы можем также определить среднее арифметическое  [c.180]

Чтобы перевести в доллары и центы премии опционов, торгуемых iro фьючерсам на сырую нефть, вам требуется произнести некоторые арифметические действия. Премия выражается, как мы уже говорили, в долларах за баррель. Например, премия 1,41 для июльского колл-опциона 1900 страйка означает 1,41 доллара за баррель. Эта величина, умноженная на размер контракта в 1000 баррелей, равняется 1410. Это та сумма, в которую обошлось бы вам (плюс комиссионные, конечно) приобретение опциона колл но июльской сырой нефти с ценой исполнения 1900. Эго га сумма, которая была бы депонирована на нашем счете, если бы ны коротко продали опцион колл по июльской сырой нефти 1900 страйка.  [c.147]

VAL индекс линии стоимости — среднее арифметическое по 1700 акциям, собранным на линии стоимости. Этот индекс служит основой для опционов, сделки по которым заключаются в Филадельфийском отделении Опционной биржи.  [c.262]

КОЭФФИЦИЕНТ ДЕЛЬТА — арифметическое частное опциона и цены финансового инструмента, на который получен опцион.  [c.312]

Для арифметического азиатского опциона-колл  [c.37]

Рассмотренные в настоящей главе показатели помимо хеджирования важны еще с той точки зрения, что они позволяют инвестору заранее определить, как изменится его позиция при определенном изменении рыночной конъюнктуры. Поскольку данные показатели могут свободно складываться и вычитаться, то инвестор с помощью простых арифметических действий получит новое значение своего опциона. В западной практике аналитические компании предоставляют услуги по расчету опционных показателей, например Рейтер (система Шварц — а — трон).  [c.221]

Представьте себе базовый инструмент (акция, облигация, валюта, товар и т.д.), цена которого движется вверх или вниз на 1 тик каждую последующую сделку Если мы будем измерять возможную стоимость акции через 100 тиков и рассмотрим большое количество вариантов, то обнаружим, что полученное распределение результатов — нормальное. Поведение цены в данном случае будет напоминать падение шарика через доску Галтона. Если рассчитать цену опциона, исходя из того принципа, что прибыль при покупке или продаже опционов должна быть равна нулю, мы получим биномиальную модель ценообразования опционов (или, коротко, биномиальную модель). Ее иногда также называют моделью Кокса-Росса-Рубинштейна в честь ее разработчиков. Такая цена опциона основывается на его ожидаемой стоимости (его арифметическом математическом ожидании), с тем расчетом, что вы не получаете прибыль, покупая или продавая опцион и удерживая его до истечения срока. В этом случае говорят, что опцион справедливо оценен.  [c.155]

Таким образом, в соответствии с моделью Блэка для фьючерсов справедливая стоимость колл-опциона с ценой исполнения 600, сроком исполнения 15 сентября 1991 года, при цене базового инструмента на 1 августа 1991 года 575, при вола-тильности 25%, с учетом 252-дневного года и R = 0 составляет 10,1202625. Интересно отметить связь между опционами и базовыми инструментами, используя вышеперечисленные модели ценообразования. Мы знаем, что 0 является наименьшей ценой опциона, но верхняя цена — это цена самого базового инструмента. Модели демонстрируют, что теоретическая справедливая цена опциона приближается к верхнему значению (стоимости базового инструмента U) при росте любой или всех трех переменных Т, R или V Это означает, что если мы, например, увеличим Т (время до срока истечения опциона) до бесконечно большого значения, тогда цена опциона будет равна цене базового инструмента. В этой связи мы можем сказать, что все базовые инструменты в действительности эквивалентны опционам с бесконечным Т. Таким образом, все сказанное верно не только для опционов, но и для базовых инструментов, как будто они являются опционами с бесконечным Т. Модель фондовых опционов Блэка-Шоулса и модель опционов на фьючерсы Блэка построены на определенных допущениях. Разработчики этих моделей исходили из трех утверждений. Несмотря на недостатки этих утверждений, предложенные модели все-таки довольно точны, и цены опционов будут стремиться к значениям, полученным из моделей. Первое из этих утверждений состоит в том, что опцион не может быть исполнен до истечения срока. Это приводит к недооценке опционов алгериканского типа, которые могут исполняться до истечения срока. Второе утверждение предполагает, что мы знаем будущую волатильность базового инструмента, и она будет оставаться постоянной в течение срока действия опциона. На самом деле это не так (т.е. волатильность изменится). Кроме того, распределение изменений волатильности логарифмически нормально, и эту проблему модели не учитывают1. Еще одно допущение модели состоит в том, что безрисковая процентная ставка остается постоянной в течение времени действия опциона. Это также не обязательно. Более того, краткосрочные ставки логарифмически нормально распределены. То обстоятельство, что, чем выше краткосрочные ставки, тем выше будут цены опционов, и утверждение относительно неизменности краткосрочных ставок может привести к еще большей недооценке опциона по отношению к ожидаемой цене (его правильному арифметическому математическому ожиданию). Еще одно утверждение (возможно наиболее важное), которое может привести к недооценке стоимости опциона, рассчитанной с помощью модели, по отношению к действительно ожидаемой стоимости, состоит в том, что логарифмы изменений цены распределяются нормально. Если бы опционы характеризовались не числом дней до даты истечения срока, а числом тиков вверх или вниз до истечения, а цена за один раз могла бы изменяться только на 1 тик и он был бы статистически независим от предыдущего тика, то мы могли бы допустить существование нормального распределения. В нашем случае логарифмы изменений цены не имеют таких характеристик. Тем не менее теоретические справедливые цены, полученные с помощью моделей, используются профессионалами на рынке. Даже если некоторые трейдеры применяют модели, которые отличаются от показанных здесь, большинство из них дадут похожие теоретические справедливые цены. Когда реальные цены расходятся с теоретическими до такой степени, что спекулянты могут получить прибыль, цены начинают снова сходиться к так называемой теоретической справедливой цене . Тот факт, что мы можем спрог-нозировать с  [c.160]

Мы можем создать собственную модель ценообразования, лишенную каких-либо предположений относительно распределения изменений цены. Сначала необходимо определить термин теоретически справедливый , относящийся к цене опционов. Мы будем говорить, что опцион справедливо оценен, если арифметическое математическое ожидание цены опциона к моменту истечения, выраженное на основе его текущей стоимости, не приншшет во внимание возможного направленного движения цены базового инструмента. Смысл определения таков Какова стоимость данного опциона для меня сегодня как для покупателя опционов  [c.161]

Уравнение (5.11) является моделью ценообразования опционов для всех распределений и дает текущее значение арифметического математического ожидания опциона на дату истечения1. Отметьте, что модель можно использовать и для пут-опционов, имея в виду, что значения а. при каждом приросте цены i будут другими. Когда необходимо учесть дивиденды, используйте уравнение (5.04) для корректировки текущей цены базового инструмента. При определении вероятности цены i на дату истечения используйте именно эту измененную текущую цену. Далее следует пример использования уравнения (5.11). Допустим, мы обнаружили, что приемлемой моделью, описывающей распределение логарифмов изменений цены товара, опционы на который мы хотим купить, является распределение Стьюдента2. Для определения оптимального числа степеней свободы распределения Стьюдента мы использовали тест К-С и пришли к выводу, что наилучшее значение равно 5. Допустим, мы хотим определить справедливую цену колл-опциона на 911104 (дата истечения срока опциона — 911220). Цена  [c.162]

DAX30 Выборка из 30 голубых фишек По рыночной стоимости Суммарный годовой доход на капитал Арифметический 1000 5218,82 Фьючерсы - DTB Опционы - DTB  [c.65]

S P500 500 акций NYSE, разбитых на 4 группы По рыночной стоимости Арифметический 10 1358,83 Фьючерсы - СМЕ Опционы - СМЕ СВОЕ  [c.65]

Если средняя арифметическая выбрана как показатель центра распределения, то соответствующими показателями вариации являются дисперсия и среднее квадратическое отклонение. Дисперсия широко применяется в финансовых расчетах как мера риска и неопределенности и привлекательна, так как имеет свойство аддитивности. Это детально рассмотрено в гл. 4. Среднее квадратическое отклонение имеет сходное применение и используется как мера изменчивости в ценообразовании опционов, которое рассмотрено в гл. 8 и 10. Однако поскольку среднее квадратическое отклонение является квадратным корнем дисперсии, что мы увидим позднее, оно неаддитивно.  [c.87]

Индекс Стандард энд Пурз-500 представляет собой взвешенный по рыночной стоимости индекс акций 500 корпораций, которые представлены в нем в следующей пропорции 400 промышленных корпораций, 20 транспортных, 40 финансовых и 40 коммунальных компаний. В него включены в основном акции компаний, зарегистрированных на Нью-йоркской фондовой бирже, однако присутствуют также акции некоторых корпораций, которые котируются на Американской фондовой бирже (АМБХ) и во внебиржевом обороте. Выборка индекса представляет около 80% рыночной стоимости всех выпусков, котируемых на Нью-йоркской фондовой бирже. Этот индекс более сложный по сравнению с индексом Доу-Джонса и считается более точным в силу того, что в нем представлены акции большего числа корпораций и, что самое главное, акции каждой корпорации взвешиваются на величину стоимости всех акций, находящихся в руках акционеров. Также необходимо заметить, что на этот индекс, в отличие от индекса Доу-Джонса, торгуются фьючерсы и опционы на фьючерсные контракты на Чикагской товарной бирже. Одно время существовали фьючерсные контракты и на индекс Доу-Джонса, но спустя некоторое время компания Dow Jones ompany , которая рассчитывала этот индекс, запретила им торговать. Создается впечатление, что именно способ расчета индекса Доу-Джонса как среднего арифметического послужил стимулом для запрета биржевой торговли фьючерсными контрактами на его значения.  [c.439]

Ошшон-колл 32, 37 Ошшон-колл с последействием 37 Опцион-пут 32, 37 Опцион-пут арифметический  [c.483]

Вы покупаете 1-летний 102.00-110.00 strangle. Поскольку форвардный курс равен 105, это означает, что дельты опционов 102.00 USD пут и 110.00 USD кол не равны. Они были бы равны, если бы форвардный курс совпадал со средним арифметическим значением цен исполнения опционов, составляющих strangle. Среднее значение цен исполнения опционов равно 106.00, т. е. (102.00 + 110.00) / 2.  [c.186]

Основы стохастической финансовой математики Т.2 (1998) -- [ c.0 ]