Основные законы распределения случайных величин

Основные законы распределения случайных величин  [c.24]

Для оценки влияния закона распределения случайных величин аг-.-(со), и, (со), значений их математических ожиданий а ц (со), bi (со), дисперсий а/у, ,-, а также уровней надежности 7г- вероятностных ограничений на результаты оптимизации сравним структуру и параметры детерминированного аналога (3.151) вероятностного ограничения (3.152) с основным ограничением классической модели линейного программирования п  [c.91]


Исследование вероятностной природы моделируемого процесса, определение законов распределения случайных величин и их основных числовых характеристик, необходимых для построения модели, осуществляются в результате обработки статистической информации, отражающей функционирование объекта на предыдущих периодах планирования.  [c.96]

В 1 -и главе рассмотрено понятие вероятности, случайного события, случайной величины, дано определение закона распределения случайной величины, а также изучены основные параметры законов распределения, такие как показатели центра распределения, показатели меры рассеяния, показатели формы распределения.  [c.10]

Во 2-й главе рассказано о наиболее употребительных законах распределения случайных величин и основных параметрах этих законов. Даны методы поиска функции распределения вероятности случайной величины в случае неинтегрируемой плотности вероятности, а также алгоритмы получения последовательностей случайных величин с произвольным законом распределения, что необходимо при моделировании случайных процессов.  [c.10]


В этой главе мы рассмотрим наиболее употребительные законы распределения случайных величин, а также основные параметры этих законов. Будут даны методы поиска функции распределения вероятности случайной величины в случае неинтегрируемой плотности вероятности, а также алгоритмы получения последовательностей случайных величин с произвольным законом распределения, что необходимо при моделировании случайных процессов. Особое внимание будет уделено обобщенному экспоненциальному распределению, которое наиболее пригодно при изучении ценообразования активов.  [c.30]

Числовые характеристики дискретных случайных величин. Часто закон распределения неизвестен и приходится оперировать только с основными числовыми характеристиками случайной величины.  [c.43]

Несмотря на существенную условность применения в экономическом анализе стохастических моделей, они достаточно распространены, поскольку с их помощью можно прогнозировать динамику основных показателей, разрабатывать научно обоснованные нормативы, идентифицировать наиболее значимые факторы. Многие методы, разработанные в математической статистике, базируются на понятии нормального закона распределения, введенного Карлом Гауссом. Это обусловлено следующими причинами. Во-первых, оказывается, что при экспериментах и наблюдениях многие случайные величины имеют распределения, близкие к нормальному. Во-вторых, даже если распределение некоторой случайной величины не является нормальным, то ее можно преобразовать таким образом, чтобы распределение преобразования, т.е. новой величины, было уже близким к нормальному. В-третьих, нормальное распределение мо-  [c.118]


Вероятностное описание случайных величин, т. е. закон их распределения и его основные параметры — математическое ожидание, дисперсию и др., можно получить статистической обработкой их массовых реализаций в прошлом. Однако корректно применить этот метод к плановым показателям развития отрасли весьма затруднительно. По многим показателям либо вообще отсутствуют аналоги в прошлом, либо число наблюдений оказывается недостаточным, чтобы можно было выяснить закон распределения. Но даже если статистические характеристики колебания тех или иных показателей развития отрасли в прошлом найдены, возникает вопрос о допустимости их распространения на будущее, так как меняются и сами условия развития отрасли. Существует и ряд трудностей чисто практического характера. В частности, отклонение отчетных показателей от плановых может быть обусловлено не только объектив-  [c.82]

Результаты идентификации вероятностных условий задачи стохастической оптимизации календарного планирования основного производства НПП показывают, что случайные параметры модели (3.124) — (3.136) можно считать независимыми друг от друга случайными величинами, подчиняющимися нормальному закону распределения, с соответствующими математическими ожиданиями и дисперсиями  [c.88]

Основным показателем долговечности элемента изделия является срок службы (наработка) до отказа Т, это случайная величина и характеризуется некоторым законом распределения и числовыми характеристиками.  [c.160]

На практике чаще других используют вероятностные модели управления запасами, основанные на том, что основные параметры систем управления — случайные величины. Это прежде всего относится к потреблению, поступлению материалов и интервалу между поставками. Распределение этих параметров управления запасами подчинено, как правило, нормальному или экспоненциальному закону.  [c.406]

Вслед за анализом априорной информации и тщательной подготовкой к многократному измерению получают и i независимых значений отсчета. Эта основная измерительная процедура может быть организована по-разному. Если изменением измеряемой величины во времени можно пренебречь, то все значения отсчета проще всего получить путем многократного повторения операции сравнения (2) с помощью одного и того же средства измерений. Отсчет в этом случае будет описываться эмпирической плотностью распределения вероятности P(XI, х , . . , х/,. . . , хп) — см. пример 12, — где согласно основному постулату метрологии каждое значение отсчета является случайным числом, подчиняющимся этому закону распределения вероятности. Такие значения отсчета х , имеющие одинаковую дисперсию, называются равноточными. Если же из априорной информации следует, что за время измерения произойдет существенное изменение измеряемой величины, то ее измеряют одновременно несколькими средствами измерений, каждое из которых дает одно из независимых значений отсчета х,. Так как средства измерений могут отличаться по точности, то в эмпирической плотности распределения вероятности отсчета P(xl, х2,. . . , Хр. . . , хп) случайные числах,, могут иметь разную дисперсию. Такие значения отсчета х( называются неравноточными. Многократное измерение с неравноточными значениями отсчета рассматривается в следующем разделе.  [c.95]

Последовательность наблюдений типа (12.1) принято называть временным рядом. Он имеет два главных отличия от рассматриваемых наблюдений анализируемого признака, образующих случайные выборки а) образующие временной ряд наблюдения л ь х2,. .., хп, рассматриваемые как случайные величины, не являются взаимно независимыми, и, в частности, значение, которое мы получим в момент времени th (k = 1, 2,. .., я), может существенно зависеть от того, какие значения были зарегистрированы до этого момента времени б) наблюдения временного ряда (в отличие от элементов случайной выборки), вообще говоря, не образуют стационарной последовательности, т. е. закон распределения вероятностей k-ro члена временного ряда (случайной величины xh x (tk)) не остается одним и тем же при изменении его номера в частности, от tk могут зависеть основные числовые характеристики случайной переменной xk — ее среднее значение Ex (tk) и дисперсия Dx (tk) (функцию от аргумента /, описывающую зависимость Ел (/) от времени, часто называют трендом временного ряда).  [c.362]

Равномерное распределение на интервале (0,1). В литературе приводились описания разных датчиков случайных величин для получения последовательностей чисел, распределенных по какому-то случайному закону. Основная проблема заключалась в программной реализации равномерного распределений на интервале (О, 1). Существуют различные методы получения такого равномерного распределения. Остановимся на программном генераторе, наиболее подходящем для компьютеров с 32-разрядным словом. Период последовательности, получаемой с помощью такого генератора,. на несколько порядков превосходит период, получаемый по методу, рассмотренному в разд. 1.2.  [c.24]

Большинство величин в производственных процессах и отношениях случайно, т.е. их значение невозможно предсказать абсолютно точно, но подчинено определенным законам. В связи с этим приходится иметь дело с понятиями случайной величины и ее законом распределения вероятностей, основными числовыми характеристиками распределения (математическое ожидание или среднее значение случайной величины, дисперсия случайной величины или среднее квадратическое отклонение, коэффициент вариации).  [c.249]

В последнее время делаются попытки решить указанную проблему. Так, с появлением системы СПУ, т.е. возможности моделировать взаимосвязь производственных функций блока основного производства, продолжительность выполнения отдельных работ сетевого графика стали рассматривать как случайную величину, значения которой имеют определенный закон распределения. Исследования статистических данных, проведенные многими учеными, показали, что продолжительность работы ttj есть случайная величина, распределенная в интервале [ab] чаще всего по закону 3-распределения (рис. 16.7) с плотностью  [c.556]

Основная особенность случайной величины состоит в том, что нельзя предвидеть, какое значение она примет в результате испытания. Однако при достаточно большом числе испытаний обобщающие характеристики выборок случайных величин практически утрачивают случайный характер. То же верно и в отношении суммы достаточно большого числа случайных величин. При увеличении числа слагаемых в сумме противоположные случайные колебания отдельных величин сглаживаются, и закон распределения суммы приближается при определенных условиях к нормальному распределению. Различные утверждения, относящиеся к этим предельным  [c.265]

Метод, применяющий дополняющие величины, заключается в том, что в повторных реализациях 1-й и 2-й, 3-й и 4-й и т. д., или в общем случае в г — 2 г" и г =2 г" — 1 (г" = 1,. .., п/2) пользуются их дополняющими случайными величинами. Так, первая реализация, например, использует случайные числа rlt rz,. .., а ее повторение — (1—гг), (1 — г2),. ... (Число случайных чисел на повтор случайно, как следует из правила останова последовательной процедуры множественного ранжирования соответственно последовательности случайных чисел не имеют постоянной длины.) Случайные числа для одной повторной реализации должны быть независимы, как независимы наблюдения это основная предпосылка ММР и она не нарушается в наших экспериментах по методу Монте-Карло. Такая предпосылка выполняется, когда употребляются дополняющие величины (или общие случайные числа). Дополняющие величины создают отрицательную корреляцию между откликами повторных реализаций с номерами г — 2 г" и г = = 2 г"—1. Предположим, что в повторной реализации большинство случайных чисел для лучшей совокупности мало так, что случайные величины xls, к которым применяется ММР, например, велики. Сравним случайные величины, имеющие экспоненциальный закон распределения, которые генерируются следующим образом  [c.288]

Другими словами, свойства строго стационарного временного ряда не изменяются при изменении начала отсчета времени. В частности, при т = 1 из предположения о строгой стационарности временного ряда xt следует, что закон распределения вероятностей случайной величины Xt не зависит от t, а значит, не зависят от t и все его основные числовые характеристики (если, конечно, они существуют), в том числе математическое ожидание Е (Xt) = // и дисперсия D(Xt)= a.  [c.13]

Обычно различают два основных типа случайных величин 1) случайную величину с известным законом распределения, которая обладает свойством устойчивости 2) непараметрически распределенные случайные величины.  [c.8]

Стохастические, или вероятностные, модели позволяют наиболее точно описать ситуации, с которыми приходится сталкиваться на практике, а значит — найти более точные решения возникающих задач. Они базйруютЬя на рассмотренных ранее трех подходах к управлению запасами, но предполагают использование более сложного математического аппарата. Кроме того, меняется один из важнейших принципов, заложенных в основу формирования моделей если в детерминированных моделях дефицит ресурса на складе был полностью исключен, то в стохастических — его возникновение допускается с некоторой вероятностью. Вводится новый параметр управления R0—вероятность бездефицитной работы. Очевидно, что чем больше средств вложено в создание резервного запаса на складе, тем ближе его значение к единице, т. е. тем меньше вероятность возникновения дефицита — (1 — J 0), и наоборот. Во всех трех типах стохастических моделей интенсивность потребления ресурса со склада рассматривается как величина случайная, закон распределения которой, как правило, неизвестен. (Для упрощения иногда можно считать, что это нормальный закон.) Это основное отличие такой постановки задачи управления запасами от рассмотренных ранее случаев. Учитывая то, что стохастическая постановка не меняет сути трех подходов к управлению запасами, в дальнейшем изложении обратим основное внимание на новизну математического аппарата моделей.  [c.428]

Введение в эмпирический анализ основные характеристики случайных величин, средние, распределение частот (вероятностей), группировки статистических данных, центр распределения, разброс, ассиметрия, эксцесс закон больших чисел качественная однородность совокупности основные типы распределения вероятности в эконометрии показатели измерения связи регрессионный анализ модель регрессии в эконометрии и математической статистике метод наименьших квадратов вероятностные гипотезы несмещенность, состоятельность и эффективность оценок следствия нормальности распределения ошибок критерий Стьюдента критерий Фишера мультиколлинеарность шаговая  [c.130]

Смотреть страницы где упоминается термин Основные законы распределения случайных величин

: [c.167]    [c.247]    [c.123]