МНОЖЕСТВЕННАЯ РЕГРЕССИЯ И КОРРЕЛЯЦИЯ [c.49]
В зависимости от формы связи случайных величин различают линейную и нелинейную регрессию и корреляцию. От того, сколько входных переменных (одна или более) используется для оценки выходной переменной, различают соответственно парную и множественную регрессию и корреляцию. [c.250]
Множественная регрессия и корреляция [c.386]
Некоторые особенности множественной регрессии и корреляции [c.386]
Глава 17 Множественная регрессия и корреляция [c.388]
Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов. [c.54]
В парной зависимости стандартизованный коэффициент регрессии есть не что иное, как линейный коэффициент корреляции fa Подобно тому, как в парной зависимости коэффициенты регрессии и корреляции связаны между собой, так и во множественной регрессии коэффициенты чистой регрессии й, связаны со стандартизованными коэффициентами регрессии / ,-, а именно [c.107]
Расчет индекса множественной корреляции предполагает определение уравнения множественной регрессии и на его основе остаточной дисперсии [c.114]
При представлении результатов множественной регрессии наряду с уравнением множественной регрессии и скорректированным коэффициентом множественной корреляции или детерминации принято приводить значения tb.. [c.139]
При применении метода исключения переменных уравнение рефессии желательно представить сразу в полной квадратичной или кубичной форме с предварительным вычислением коэффициентов регрессии и корреляции и проверкой линейности модели по / -критерию. Исключение начинают с фактора, имеющего наименьший t-критерий. На каждом этапе после исключения каждого фактора для нового уравнения регрессии вычисляется множественный коэффициент корреляции, остаточная дисперсия и F-критерий. Для прекращения исключения факторов следует следить за изменением остаточной дисперсии. Как только она начнет увеличиваться — исключение факторов следует прекратить. Используется также метод контроля значений /-критерия. Для исключения следующего фактора мы сравниваем его значение ( ) с /-критерием предыдущего исключенного фактора и, если они отличаются незначительно, то фактор исключается. Если же различия /-критериев значительны, то исключение факторов прекращают. [c.121]
Первый представляет собой математические модели для отыскания средних зависимостей между двумя или более параметрами. При этом применяют соответственно уравнения простой либо множественной регрессии. Регрессионные связи между параметрами во времени могут быть положительными или отрицательными. Первые характеризуются возрастанием анализируемых параметров во времени (например, растут затраты и объем производства), а вторые — уменьшением одного параметра при возрастании другого (например, при повышении концентрации, основного вещества в сырье удельный его расход на единицу продукции снижается). С помощью уравнений регрессии и корреляции выявляют эмпирические зависимости между различными параметрами. Затем такие зависимости исследуют с помощью специальных точных наук. Выявленные при ФСА закономерности в связях между параметрами используют посредством их экстраполяции (т. е. распространения) на условия и среды планируемого периода. [c.173]
Если находится корреляционная связь между несколькими взаимозависимыми переменными величинами, то сначала устанавливают парные зависимости этих переменных и для каждой зависимости определяется свой коэффициент корреляции, а затем находятся уравнение множественной регрессии и коэффициент множественной корреляции. Примером использования ее результатов может быть сметно-финансовый расчет стоимости систем кондиционирования воздуха. Известно, что последняя зависит от многих факторов мощности по холоду и воздуху, удельного числа кондиционеров (шт/Гкал или шт/МВт), удельной поверхности воздуховодов, материала и вида изоляции воздуховодов и оборудования, рабочей разности температур воздуха, числа зон обслуживания, наличия рециркуляции, мощности электродвигателей, способа охлаждения воздуха, коэффициента использования мощности по воздуху и др. В результате удельная стоимость систем кондиционирования воздуха (руб/м3 кондиционируемого объема здания) колеблется в пределах до 600%. [c.113]
В табл. 11-1 приводится информация о всех сетях, обучавшихся для этой модели, с коэффициентами корреляции и другими показателями. В таблице указаны название файла, содержащего сеть, размер — число слоев и число нейронов в каждом из слоев, число связей в сети, оптимизированных при обучении (подобно количеству коэффициентов регрессии при множественной регрессии и их связи с излишней подгонкой под исторические данные), и корреляция — множественная корреляция выхода сети с его целевым значением. Скорректированные на излишнюю подгонку под входные данные значения корреляции занимают два столбца в левом — коррекция исходя из обучения на наборе в 40 000 точек данных, в правом — исходя из 13 000 точек. Последние строки содержат реальное количество точек данных, а также их количество, предполагаемое при расчете коррекции. [c.263]
Эти сведения вводятся в ПЭВМ и рассчитываются матрицы парных и частных коэффициентов корреляции, уравнение множественной регрессии, а также показатели, с помощью которых оценивается надежность коэффициентов корреляции и уравнения связи критерий Стьюдента, критерий Фишера, средняя ошибка аппроксимации, множественные коэффициенты корреляции и детерминации. [c.145]
С помощью множественной регрессии можно рассматривать более сложные уравнения, где неизвестную переменную у рассчитывают на основе ряда независимых переменных , , x2, х2,. .. Методы корреляции и регрессии лежат в основе ряда методов оценки и прогнозирования, используемых в бизнесе и экономике. [c.129]
Проблема отбора факторных признаков для построения моделей взаимосвязи может быть решена с помощью эвристических или многомерных статистических методов анализа. Наиболее приемлемым методом отбора факторных признаков является шаговая регрессия (шаговый регрессионный анализ). Сущность данного метода заключается в последовательном включении факторов в уравнение регрессии и последующей проверке их значимости. Факторы поочередно вводятся в уравнение так называемым прямым методом . При проверке значимости введенного фактора определяется, насколько уменьшается сумма квадратов остатков и увеличивается величина множественного коэффициента корреляции (R). Одновременно используется и обратный метод, т.е. исключение факторов, ставших незначимыми на основе -крите-рия Стьюдента. Фактор является незначимым, если его включение в уравнение регрессии только изменяет значение коэффициентов регрессии, не уменьшая суммы квадратов остатков и не увеличивая их значения. Если при включении в модель соответствующего факторного признака величина множественного коэффициента корреляции увеличивается, а коэффициент регрессии не изменяется (или меняется несущественно), то данный признак существен и его включение в уравнение регрессии необходимо. [c.118]
В предыдущих главах была изучена классическая линейная модель регрессии, приведена оценка параметров модели и проверка статистических гипотез о регрессии. Однако мы не касались некоторых проблем, связанных с практическим использованием модели множественной регрессии. К их числу относятся мультиколлинеарность, ее причины и методы устранения использование фиктивных переменных при включении в регрессионную модель качественных объясняющих переменных, линеаризация модели, вопросы частной корреляции между переменными. Изучению указанных проблем посвящена данная глава. [c.108]
Блок 14 — переход к вычислению следующего вида уравнения регрессии и анализ статистических характеристик "для каждого уравнения регрессии. Для оценки существенности коэффициента множественной корреляции предусмотрен нормативно-справочный массив В 120. [c.176]
Сравнивая коэффициенты множественной регрессии с коэффициентами парной корреляции по отдельным факторам, находим, что для четвертого фактора знаки при коэффициентах разные. Такое положение экономически противоречиво. Если исходить из парных коэффициентов корреляции, то с увеличением числа филиалов уровень торгово-управленческих расходов должен уменьшаться, а согласно коэффициенту множественной регрессии — расти. Такое явление может быть объяснено незначительным влиянием этих факторов (их несущественностью) или коллинеарностью модели (наличием тесной связи между двумя факторными признаками). Для исключения этого явления (различных знаков коэффициентов парной корреляции и множественной регрессии при. одном и том же факторном признаке) исключаем фактор 4 из модели. После решения новой системы линейных уравнений получим следующие коэффициенты множественной регрессии для оставшихся факторов pi = 0,l 49 02 = 0,721 р3=— 0,161 р5 = 0,130. [c.179]
Становление и развитие эконометрического метода происходили на основе так называемой высшей статистики — на методах парной и множественной регрессии, парной, частной и множественной корреляции, выделения тренда и других компонент вре- [c.14]
Парабола второй степени, как и полином более высокого порядка, при линеаризации принимает вид уравнения множественной регрессии. Если же нелинейное относительно объясняемой переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции, величина которого в этом случае совпадет с индексом корреляции Ryx = ryv где z — преобразованная величина [c.81]
Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата - коэффициента детерминации. [c.112]
В справедливости данной формулы можно убедиться, если обратиться к линейному уравнению множественной регрессии в стандартизованном масштабе и определить для него индекс множественной корреляции как [c.114]
Как видим, величина множественного коэффициента корреляции зависит не только от корреляции результата с каждым из факторов, но и от межфакторной корреляции. Рассмотренная формула позволяет определять совокупный коэффициент корреляции, не обращаясь при этом к уравнению множественной регрессии, а используя лишь парные коэффициенты корреляции. [c.116]
В статистических пакетах прикладных программ в процедуре множественной регрессии обычно приводится скорректированный коэффициент (индекс) множественной корреляции (детерминации). Величина коэффициента множественной детерминации используется для оценки качества регрессионной модели. Низкое значение коэффициента (индекса) множественной корреляции означает, что в регрессионную модель не включены существенные факторы — с одной стороны, а с другой стороны — рассматриваемая форма связи не отражает реальные соотношения между переменными, включенными в модель. Требуются дальнейшие исследования по улучшению качества модели и увеличению ее практической значимости. [c.120]
Хотя частная корреляция разных порядков и может представлять аналитический интерес, в практических исследованиях предпочтение отдают показателям частной корреляции самого высокого порядка, ибо именно эти показатели являются дополнением к уравнению множественной регрессии. [c.123]
В приложениях теории частной корреляции, которая полностью вытекает из теории множественной регрессии, путаницы часто бывает еще больше. При рассмотрении взаимодействия трех и более переменных уже нельзя не касаться причинной связи, влияния. В литературе наряду со словами взаимосвязь , взаимовлияние , связь и другими появляются термины влияние , действие , причина и т. п. [c.8]
Функция Анализ данных системы EXEL позволяет получать матрицу коэффициентов корреляции, модели простой линейной и множественной регрессии и их статистические характеристики. [c.81]
Необходимость применения многофакторного корреляционного анализа. Этапы многофакторного корреляционного анализа. Правила отбора факторов для корреляционной модели. Обоснование необходимого объема выборки данных для корреляционного анализа. Сбор и статистическая оценка исходной информации. Способы обоснования уравнения связи. Основные показатели связи в корреляционном анализе и их интерпретация. Сущность парных (общих), частных и множественных коэффициентов корреляции и детерминации. Оценка значимости коэффициентов корреляции. Порядок расчета уравнения множественной регрессии шаговым способом. Интерпретация его параметров. Назначение коэффициентов эластичности и стандартизированных бетта-коэф-фициентов. [c.138]
И в том и в другом периоде среднесменная добыча рабочего теснее коррелирует с мощностью пласта, нежели с уровнем механизации навалки угля. Однако наметилось некоторое снижение величины rvm при повышении гуи. Сравнение коэффициентов парной корреляции зависимой переменной (V) с независимыми переменными и корреляции последних между собой свидетельствует о ко-линеарности факторов - их тесной линейной связи. При таком соотношении нецелесообразно построение множественной регрессии, куда бы входили оба названных фактора - и мощность пласта и коэффициент механизированной навалки угля. Поэтому построим [c.416]
Важный этап в регрессионном анализе — проверка существенности отличия от нуля коэффициента множественной корреляции. Этим проверяется вся построенная модель. Если окажется, что коэффициент множественной корреляции существенно не отличается от нуля, то можно сделать вывод о равенстве нулю всех коэффициентов регрессии и всю модель следует забраковать. Простейший метод проверки существенности (значимости) коэффициента множественной корреляции сводится к построению доверительных интервалов для него и выясне- [c.179]
Более тщательный и систематический анализ многомерных корреляций и множественных регрессий этого множества факторов не показывает ясной причины, вызывающей крах [30]. Наиболее четкое утверждение, хотя в чем-то и самоповторяющееся, заключается в том, что наиболее статистически значимая переменная в октябрьском крушении может быть приписана нормальной реакции рынка акций каждой страны на движение мирового рынка. Таким образом, был сконструирован индекс мирового рынка [30], путем равного взвешивания местных индексов упомянутых ранее 23 основных индустриальных стран и нормировании его на уровне 100 в день 30 сентября. Он упал до 73,6 к 30 октября. Важным результатом было обнаружение статистических соотношений между ним и месячным доходом каждой страны в период с 1981 года до месяца, предшествующего краху, хотя и со значимыми разбросами величины этого соответствия от страны к стране [30]. Такая корреляция снимает влияние институциональных характеристик рынка, что сигнализирует о возможном существовании тонкой, но, тем не менее, значимой в мировом масштабе, кооперативности во времени, предшествующем краху. [c.22]
При правильном включении факторов в регрессионный анализ величина индекса множественной корреляции будет существенно отличаться от индекса корреляции парной зависимости. Если же дополнительно включенные в уравнение множественной регрессии факторы третьестепенны, то индекс множественной корреляции может практически совпадать с индексом парной корреляции (различия в третьем, четвертом знаках). Отсюда ясно, 4TQ, сравнивая индексы множественной и парной корреляции, можно сделать вывод о целесообразности включения в уравнение регрессии того или иного фактора. Так, если у рассматривается как функцияхиги получен индекс множественной корреляции Ryv = 0,85, а индексы парной корреляции при этом были R = 0,82 и Rn = 0,75, то совершенно ясно, что уравнение парной регрессии у =f(x) охватывало 67,2 % колеблемости результативного признака под влиянием факторах, а дополнительное включение в анализ фактора z увеличило долю объясненной вариации до 72,3 %, т. е. уменьшилась доля остаточной вариации на 5,1 проц. пункта (с 32,8 до 27,7%). 8-Т525 113 [c.113]
Величина индекса множественной корреляции, определенная как квази-/ 2 , не будет совпадать с совокупным коэффициентом корреляции, который может быть рассчитан для линейного в логарифмах уравнения множественной регрессии, ибо в последнем раскладывается на факторную и остаточную суммы квадратов не S(y — У)2, a SOny — Iny). Аналогичное положение, когда индекс и коэффициент множественной корреляции не совпадают, имеем и для обратной функции [c.118]
Классическая линейная модель множественной регрессии (КЛММР). Оценка неизвестных параметров КЛММР, статистические свойства оценок. Отбор наиболее существенных объясняющих переменных в КЛММР. Признаки и причины мультиколлинеарности. Методы устранения мультиколлинеарности. Множественная корреляция. Частная корреляция. Оценка [c.3]
Смотреть страницы где упоминается термин МНОЖЕСТВЕННАЯ РЕГРЕССИЯ И КОРРЕЛЯЦИЯ
: [c.4] [c.387] [c.387]Смотреть главы в:
Практикум по эконометрике -> МНОЖЕСТВЕННАЯ РЕГРЕССИЯ И КОРРЕЛЯЦИЯ