Проверка значимости модели

Проверка значимости модели  [c.65]

При проверке значимости модели принято придерживаться следующей последовательности действий  [c.65]


Проблема отбора факторных признаков для построения моделей взаимосвязи может быть решена с помощью эвристических или многомерных статистических методов анализа. Наиболее приемлемым методом отбора факторных признаков является шаговая регрессия (шаговый регрессионный анализ). Сущность данного метода заключается в последовательном включении факторов в уравнение регрессии и последующей проверке их значимости. Факторы поочередно вводятся в уравнение так называемым прямым методом . При проверке значимости введенного фактора определяется, насколько уменьшается сумма квадратов остатков и увеличивается величина множественного коэффициента корреляции (R). Одновременно используется и обратный метод, т.е. исключение факторов, ставших незначимыми на основе -крите-рия Стьюдента. Фактор является незначимым, если его включение в уравнение регрессии только изменяет значение коэффициентов регрессии, не уменьшая суммы квадратов остатков и не увеличивая их значения. Если при включении в модель соответствующего факторного признака величина множественного коэффициента корреляции увеличивается, а коэффициент регрессии не изменяется (или меняется несущественно), то данный признак существен и его включение в уравнение регрессии необходимо.  [c.118]


Проверка адекватности моделей, построенных на основе уравнений регрессии, начинается с проверки значимости каждого коэффициента регрессии с помощью Г-критерия Стьюдента  [c.120]

Можно показать, что для парной линейной модели оба способа проверки значимости с использованием F- и /-критериев равносильны, ибо эти критерии связаны соотношением F = /2.  [c.73]

При несоблюдении основных предпосылок МНК приходится корректировать модель, изменяя ее спецификацию, добавлять (исключать) некоторые факторы, преобразовывать исходные данные для того, чтобы получить оценки коэффициентов регрессии, которые обладают свойством несмещенности, имеют меньшее значение дисперсии остатков и обеспечивают в связи с этим более эффективную статистическую проверку значимости параметров регрессии. Этой цели, как уже указывалось, служит и применение обобщенного метода наименьших квадратов, к рассмотрению которого мы и переходим в п. 3.11.  [c.169]

Предложенные методы информационного моделирования технологических цепей и операций, реализованные в соответствующих методиках, не отличаются по форме от корреляционно-регрессионного анализа. Расчет и обоснование моделей проходят по классической схеме решение систем уравнений, оценка значимости коэффициентов, проверка идентичности модели. Типичными являются и задачи, решаемые с помощью моделей оценка взаимосвязей между параметрами ТП, выявление параметров, обладающих наибольшей нормативностью или влиятельностью на другие параметры, возможность расчета межоперационных допусков. Однако с позиций управления технологическими процессами информационные модели более просты, лаконичны и, следовательно, более приемлемы для целей управления.  [c.92]

Нам необходимо решить, будет ли проверка значимости "односторонней" или "двусторонней". Это решение должно быть принято еще до того, как станут известны результаты рефессии. Выбор определяется теоретическим обоснованием модели связи X и Y, проверяемой с помощью рефессии.  [c.276]


Проверка значимости скорректированного Л2 — это также проверка значимости связи между зависимой переменной Y и любой из независимых переменных X,-. Действительно, если регрессионная модель имеет высокую степень предоставления объяснения формирования взаимосвязи, изменение зависимой переменной происходит из-за изменений независимых переменных, и суммы квадратов отклонений, объясняемые регрессией (СКР) будут относительно больше остаточной суммы квадратов отклонений (СКО). Если же модель имеет низкую степень предоставления объяснения, изменение зависимой переменной происходит из-за изменения значения ошибки, и СКО будет относительно больше СКР.  [c.285]

Коэффициент множественной корреляции (R) находится в пределах 0,931 < R < 0,948. Коэффициент множественной детерминации (R2) находится в пределах 0,867 < R2 < 0,899, т.е. изменение вошедших в модели показателей производственных факторов-аргументов от 86,7 до 89,9% обусловливает изменение показателей удельной фондоемкости. Проверка значимости коэффициентов множественной корреляции и коэффициентов регрессии полученных уравнений подтвердила, что они значимы.  [c.527]

Для проверки значимости (пригодности) полученного уравнения регрессии применяют специальные приемы. Такую проверку называют проверкой адекватности модели.  [c.47]

Объяснить природу и методы двумерного регрессионного анализа и описать модель, процедуры оценки параметров, нормирование коэффициента регрессии, проверки значимости, процедуру определения точности прогноза, анализ остатков и перекрестную проверку модели.  [c.640]

Разбираясь с регрессионным анализом, мы сначала обсудим самый простой его тип — двумерную регрессию, опишем процедуры оценки, нормирования коэффициентов регрессии, проверку и определение тесноты и значимости связи между а также точность прогноза и которые лежат в основе регрессионного анализа. Затем мы разберем модель множественной регрессии, уделив особое внимание интерпретации параметров, тесноте связи, проверкам значимости и анализу остатков.  [c.640]

Регрессионная модель при оценке параметров и проверке значимости (рис. исходит ряда допущений.  [c.658]

Коэффициенты регрессии, как и коэффициенты корреляции, — случайные величины, зависящие от объема выборки. Поэтому для проверки надежности коэффициента регрессии выдвигается гипотеза о том, что коэффициент регрессии в генеральной совокупности равен нулю (нулевая гипотеза), т. е. связь, установленная по данным выборки, в генеральной совокупности отсутствует. Простейшая схема проверки этой гипотезы при линейной форме связи сводится к построению доверительного интервала для каждого коэффициента регрессии. Если граничные значения данного коэффициента регрессии в этом интервале имеют противоположные знаки, то принятая гипотеза подтверждается и тогда соответствующий этому параметру уравнения фактор исключается из модели. Для нелинейной формы связи имеются другие методы оценки значимости факторов  [c.18]

Hi) В попытке устранить до некоторой степени недостатки, описанные в пунктах (i) и (it), мы можем разработать модель прогнозирования исходя из усеченного набора имеющихся исторических данных. Например, если у нас есть показатели объема продаж за период с 1990 по 1997 гг., мы можем выработать модель на основе значений только за 1990—1996 гг. Остальные показатели, т. е. показатели за 1997 г., можно использовать для сравнения с прогнозными показателями, полученными с помощью этой модели. Такого рода проверка более реалистична, так как она фактически моделирует прогнозную ситуацию. Недостаток этого метода состоит в том, что самые последние, а следовательно, и наиболее значимые показатели исключены из процесса формирования исходной модели.  [c.216]

Построенная модель на основе ее проверки по F-критерию Фишера должна быть в целом адекватна и все ее коэффициенты регрессии значимы. Такая модель может быть использована для принятия решений к осуществлению прогнозов.  [c.121]

Можно продолжить этот перечень, мы только привели некоторые из возможных факторов. После анализа и проверки существенности всех факторов отбираются наиболее значимые, которые и должны войти в состав многофакторной корреляционной экономико-математической модели определения потребности в машинах напольного безрельсового электротранспорта. Применение такого метода расчета представляется в данном случае наиболее целесообразным. При долгосрочном прогнозировании следует также учитывать факторы научно-технического прогресса, методика определения и учета которых широко изложена в [11, 24, 33, 69, 74].  [c.88]

Проверка выдвинутых гипотез дала значительное количество интересных и противоречивых результатов, которые часто указывали на наличие связей, обратных предсказанным. Регрессионная модель показывает все связи, которые проявили себя как достаточно значимые по отношению к основной зависимой переменной, т.е. использованию методов активного трансфера технологий.  [c.222]

Самое важное решение, которое должен принять аналитик, — это выбор совокупности переменных для описания моделируемого процесса. Чтобы представить себе возможные связи между разными переменными, нужно хорошо понимать существо задачи. В этой связи очень полезно будет побеседовать с опытным специалистом в данной предметной области. Относительно выбранных вами переменных нужно понимать, значимы ли они сами по себе, или же в них всего лишь отражаются другие, действительно, существенные переменные. Проверка на значимость включает в себя кросс-корреляционный анализ. С его помощью можно, например, выявить временную связь типа запаздывания (лаг) между двумя рядами. То, насколько явление может быть описано линейной моделью, проверяется с помощью регрессии по методу наименьших квадратов (OLS). Полученная после оптимизации невязка R может принимать значения от 0 (полное несоответствие) до 1 (точное соответствие). Часто бывает так, что для линейных систем OLS-метод дает такие результа-  [c.58]

В целом, можно сказать, что предварительная обработка через формирование совокупности переменных и проверку их значимости существенно улучшает качество модели. Если никаких теоретических методов проверки в распоряжении нет, переменные можно выбирать методом проб и ошибок, или с помощью формальных методов типа генетических алгоритмов [69], [70].  [c.61]

Другим известным приемом является вычеркивание связей в чрезмерно связанном графе с целью изучения поведения системы и ее элементов в новых условиях. Устойчивость системы может означать верность гипотезы. Решение об уничтожении той или иной связи модели может быть принято или на основании критерия статистической значимости, или на основании произвольно установленного порогового критерия величины коэффициента причинного влияния. Проверкой правильности гипотез и корректности модели должно служить ее подтверждение при испытаниях на контрольных данных.  [c.223]

Мы заметили выше, что вероятностные модели предоставляют лишь оценки коэффициентов регрессии. Важно, таким образом, проверить, насколько представительны данные оценки относительно истинных коэффициентов. Это достигается проверкой статистической значимости коэффициентов регрессии и близости расположения фактических данных к рассчитанной линии регрессии.  [c.271]

Как показывает рис. 6.3, в случае вероятностных моделей расчет коэффициентов регрессии с использованием выражений (6.7) и (6.8) дает одну оценку величины Y, т.е. E(Yt). Оценки коэффициентов регрессии также предположительно нормально распределены. Нам нужно знать, статистическую значимость этих коэффициентов. Данная задача решается проверкой того, что коэффициенты регрессии значимо отличаются от нуля.  [c.271]

Из анализа Калдора в его статье Модель экономического роста [12] кажется очевидным, что он ( в первом приближении ) трактует sw и Sp как константы в течение длительных промежутков времени. Конечно, возможно, что теория Калдора могла бы быть эмпирически значимой, даже когда sp и s изменяются часто. В этом случае проверка теории будет заключаться в наблюдении за динамикой ковариации sp/sw и I/Y. Однако у нас нет наблюдений за sp и sw в различные моменты времени, и поэтому, если теория проверяется на временных рядах, необходимо допускать постоянство sw и sp. Конечно, возможно также, что когда соответствующие данные станут доступными, эта теория сможет быть полезной в объяснении международных или межрегиональных изменений в относительных долях, независимо от временных колебаний sp и s ,.  [c.134]

К. Обеспечивается достоверность результатов оптимизации а) расширением границ комплексности по сравнению с традиционной технологией делопроизводственных процессов б) проверкой применимости используемой математической модели (проверкой точности и подробности оптимальных значений расчетных параметров) в) коррекцией математической модели г) проверкой адекватности и значимости коэффициентов математических моделей, построенных по экспериментальным данным д) дисперсионным анализом результатов наблюдений, используемых в расчетах.  [c.134]

Оценка адекватности модели. Располагая ошибкой опыта, мы можем выяснить, является ли линейная модель адекватной. Для проверки адекватности строят F-критерий Фишера. Им проверяют гипотезу о том, что дисперсия относительно модели значимо превышает дисперсию опыта против альтернативы о незначимом различии между этими дисперсиями. Если различие незначимо (при некотором уровне значимости, обычно 5%-ном), то гипотеза об адекватности модели может  [c.230]

Вследствие вышесказанного все выводы, получаемые на основе соответствующих t- и F-статистик, а также интервальные оценки будут ненадежными. Следовательно, статистические выводы, получаемые при стандартных проверках качества оценок, могут быть ошибочными и приводить к неверным заключениям по построенной модели. Вполне вероятно, что стандартные ошибки коэффициентов будут занижены, а следовательно, t-статистики будут завышены. Это может привести к признанию статистически значимыми коэффициентов, таковыми на самом деле не являющимися.  [c.212]

В целом, говоря о разделении временного интервала на части, отметим, что оно необходимо в тех случаях, когда значения параметров а, менялись во времени (что нарушало предпосылку модели линейной регрессии об их неизменности). Если изменялись они более или менее скачкообразно, то, разделяя временной интервал моментами таких "скачков", можно разбить его на несколько интервалов, на каждом из которых предпосылки модели выполнялись Для проверки статистической значимости различия коэффи-  [c.344]

Довольно часто гипотеза конвергенции неоклассической модели роста тестируется на примере регионов одной страны. Несмотря на то что возможно наличие расхождений между регионами по уровню развития технологий, предпочтений, экономических институтов и т.д., данные различия будут существенно менее значимыми, чем различия между странами. Поэтому вероятность наличия абсолютной конвергенции между регионами существенно выше, нежели между странами. Вместе с тем при использовании регионов для проверки гипотезы абсолютной сходимости нарушается важная предпосылка неоклассической модели роста - закрытость экономики. Очевидно, что культурные, лингвистические, институциональные и формальные барьеры для перемещения факторов оказываются менее значимыми для группы регионов одной страны. Однако показано, что даже в случае мобильности факторов и, таким образом, нарушения предпосылок исходной модели динамические свойства закрытой экономики и экономики со свободным  [c.32]

Оцененные коэффициенты статистически значимы, коэффициент детерминации высокий, проверка на адекватность не выявляет нарушений стандартных предположений классической линейной модели регрессии.  [c.173]

Статистику также можно использовать в проверках степени согласия, чтобы определить, согласуется ли определенная модель с наблюдаемыми данными. Эти проверки выполняют вычислением значимости (уровня статистической значимости) выборочных отклонений от предполагаемых теоретических (ожидаемых) а также можно выполнить как на основе таблиц сопряженности, так и на основе таблиц распределения частот (одномерная табуляция). Расчет ж определение ее уровня статистической значимости выполняется изложенным выше способом.  [c.577]

Следует отметить не совсем удачный перевод на русский язык термина dummy variables как фиктивная переменная. Во-первых, в модели регрессионного анализа мы уже имеем фиктивную переменную X при коэффициенте Ро> всегда равную единице. Во-вторых, и это главное — все процедуры регрессионного анализа (оценка параметров регрессионной модели, проверка значимости ее коэффициентов и т. п.) проводятся при включении фиктивных переменных так же, как и обычных , количественных объясняющих переменных. Фиктивность же переменных 2/ состоит только в том, что они количественным образом описывают качественный признак.  [c.118]

Кроме проверки значимости всей модели, необходимо провести проверки значимости коэффициентов регрессии по /-критерию Стюдента. Минимальное значение коэффициента регрессии Ьг должно соответствовать условию bifob- t, где bi — значение коэффициента уравнения регрессии в натуральном масштабе при i-ц факторном признаке аь. — средняя квадратическая ошибка каждого коэффициента.  [c.181]

Оценка тесноты связи между переменными по коэффициенту парной корреляции не решает всех вопросов. В частности,этот показатель не учитывает частной ("чистой") корреляции между изучаемь М явлением и характеризующими его факторами. Известно, что кФкУи аяся хорошая теснота связи между двумя показателями может возникнуть под влиянием третьего показателя, который имеет высокую теС"отУ связи с общими исследуемыми показателями. Чтобы исключить нежелательное влияние этих показателей и более достоверно установить зНачимость каждого фактора с учетом одновременного действия других, в0°Дят частный коэффициент корреляции разных степеней. Проверка надежности этого коэффициента по одному из известных критериев [21, 4Ь 46, 48] позволяет более точно оценить значимость каждого фактора, выбранного для модели. Необходимо оценить существенность факторов в зависимости от характера связи между ними, а также между отдельными факторами и исследуемым показателем.  [c.17]

Формально с проблемами спецификации приходится сталкиваться постоянно при анализе модели, например, при тестировании гипотез о значимости тех или иных регрессоров. Однако, как мы увидим здесь, принятие или отвержение гипотезы само по себе не тождественно принятию решения, какую именно модель использовать. В частности, мы увидим, что для максимально эффективного оценивания параметров при наиболее важных регрессорах вопрос о включении или невключении остальных регрессоров решается с помощью другого критерия, нежели простая проверка гипотезы об их незначимости.  [c.243]

Важный этап в регрессионном анализе — проверка существенности отличия от нуля коэффициента множественной корреляции. Этим проверяется вся построенная модель. Если окажется, что коэффициент множественной корреляции существенно не отличается от нуля, то можно сделать вывод о равенстве нулю всех коэффициентов регрессии и всю модель следует забраковать. Простейший метод проверки существенности (значимости) коэффициента множественной корреляции сводится к построению доверительных интервалов для него и выясне-  [c.179]

Вернемся к общему (негауссовскому) случаю. Практика многомерного статистического анализа показала, что частные коэффициенты корреляции, определенные соотношениями (1.22) — (1.23 ), являются, как правило, удовлетворительными измерителями очищенной линейной связи между х(1) и при фиксированных значениях остальных переменных и в случае, когда распределение анализируемых показателей ( (0), x(l . .., х(р>) отличается от нормального. Определив с помощью формулы (1.22) частный коэффициент корреляции в случае любого исходного распределения признаков (х(0 х(1 . .., х(р)), включим его в общий математический инструментарий корреляционного анализа линейных моделей. При этом их можно интерпретировать как показатели тесноты очищенной связи, усредненные по всевозможным значениям фиксируемых на определенных уровнях мешающих переменных. 1.2.3. Статистические свойства выборочных частных коэффициентов корреляции (проверка на статистическую значимость их отличия от нуля, доверительные интервалы). При исследовании статистических свойств выборочного частного коэффициента корреляции порядка k (т. е. при исключении опосредованного влияния k мешающих переменных) следует воспользоваться тем (см., например, [20, теорема 4.3.4]), что он распределен точно так же, как и обычный (парный) выборочный коэффициент корреляции между теми же переменными с единственной поправкой объем выборки надо уменьшить на k единиц, т. е. полагать его равным п — , а не я. Поэтому  [c.84]

Значение критерия Фишера, вычисленное по формуле (10.10) сравнивают с табличным значением для выбранного уровня значимости. Если расчетное значение не превышает табличного, то гипотезу адекватности принимают. Для отыскания табличного значения критерия требуется еще знать число степеней свободы, связанных с числителем и знаменателем выражения (10.10). Они представляют собой знаменатели тех формул, по которым вычисляют соответствующие дисперсии. Наряду с прямой оценкой адекватности, которая описана выше, существует ряд косвенных признаков, по которым можно судить о степени адекватности модели. Часто для оценки дисперсии опыта используют параллельные эксперименты в нулевой точке. Различие между средним значением из этих опытов и свободным членом линейного уравнения характеризует суммарный вклад квадратичных эффектов. Если это различие незначимо, например по критерию Стьюден-та, то можно предполагать, что модель адекватна. Такая проверка не является абсолютной, так как возможно, что сумма положительных коэффициентов при квадратах близка к сумме отрицательных.  [c.231]

При анализе временных рядов часто приходится учитывать статистическую зависимость наблюдений в разные моменты времени. Иными словами, для многих временных рядов предположение о некоррелированности ошибок не выполняется. В этом разделе мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка (точное определение будет дано ниже). Как было показано ранее (глава 5), применение обычного метода наименьших квадратов к этой системе дает несмещенные и состоятельные оценки параметров, однако можно показать (см., например, Johnston and DiNar-do, 1997), что получаемая при этом оценка дисперсии оказывается смещенной вниз, что может отрицательно сказаться при проверке гипотез о значимости коэффициентов. Образно говоря, МНК рисует более оптимистичную картину регрессии, чем есть на самом деле.  [c.184]

Для probit- или /о< г - мод елей проверка гипотез о наличии ограничений на коэффициенты, в частности, гипотез о значимости одного или группы коэффициентов, может проводиться с помощью любого из трех тестов — Вальда, отношения правдоподобия, множителей Лагранжа, рассмотренных в главе 10 (п. 10.6). Большинство эконометрических пакетов, в которых реализованы probit- или /о<7 -модели, имеют встроенные процедуры проверки ограничений с указанием метода тестирования.  [c.328]

Пусть мы приступаем к эксперименту, полагая, что адекватна модель, содержащая только k главных эффектов, или, в терминологии регрессионного анализа, мы имеем модель первого порядка. Если взять насыщенный план разрешения III, то можно точно подогнать модель, но нельзя проверить ее адекватность. Однако, если (k + 1) не кратно четырем, план разрешения III будет не насыщенным, или, если все же (k + 1) кратно четырем, можно взять план разрешения IV. В обоих случаях мы сможем оценить несколько (смешанных) первых взаимодействий. Далее, если одна или несколько экспериментальных точек дублировалось, мы независимо оценим а2 и сможем проверить значимость наших парных взаимодействий. Пусть одни взаимодействия окажутся значимыми, а другие- — нет. Тогда может иметь смысл взять модель со всеми взаимодействиями. Несмотря на то что некоторые взаимодействия незначимы, их несмещенные МНК-оценки с минимальной дисперсией не равны нулю (хотя и малы). Так, если все факторы количественные, мы можем взять полином второго порядка (со всеми парными взаимодействиями плюс полные квадраты) вместо модели первого порядка. Сравните также с обсуждением в [Box, 1954, р. 57] и в [Hunter, 1959b, p. 9], где рассмотрена практика проверки отдельных параметров. Итак, вместо раздельной проверки эффектов мы можем получить их общую (объединенную) сумму квадратов и сравнить ее средний квадрат с независимой оценкой сг2.20  [c.64]

Если мы отбрасываем гипотезу о корректности нашей модели, то обычно переходим к модели более высокого порядка 21. Это приводит к последовательному планированию. Мы можем начать с плана из очень малого числа опытов. Затем мы увидим, что планы разрешения III годятся для изучения k факторов всего в N = k + 1 опытах, если N кратно четырем, иначе мы возьмем следующий план с Nlt кратным четырем. Если АГ не" кратно четырем или же если есть некоторые дополнительные опыты, то мы можем проверить, адекватна ли модель первого порядка. Для этого мы можем подсчитать некоторые суммы квадратов взаимодействий или остаточную сумму квадратов. При наличии независимой оценки а2 (из параллельных или предварительных опытов) можно воспользоваться /""-критерием. А если взаимодействия окажутся значимыми, то мы можем перейти к плану разрешения IV. f K счастью, мы видим, что построить план разрешения IV из плана разрешения III не представляет никакого труда. Мы просто должны повторить план разрешения III с обратными знаками, т. е. помимо Ыг опытов плана22 разрешения III, которые мы уже провели, мы берем еще NI опытов. По определению, план разрешения IV дает оценки главных эффектов, которые не смешаны с парными взаимодействиями. Поэтому из плана разрешения IV мы можем надежно заключить, есть ли у какого-либо фактора главный эффект (при условии, что нет взаимодействий трех и более факторов это условие можно проверить при проверке адекватности по плану разрешения IV). Если предположить, что те факторы, у которых нет главных эффектов, не имеют и взаимодействий, то вполне возможно, что на основании плана разрешения IV мы исключим некоторые факторы. Иметь меньше факторов это значит, что сокращается число опытов, необходимых для эксперимента (ср. с табл. 8). Оставшиеся факторы можно изучить в плане разрешения V.  [c.65]

Напомним (см. разд. 1.4. Главы 1), что поскольку логит-модель является нелинейной моделью, то оцененные коэффициенты имеют интерпретацию, отличающуюся от интерпретации коэффициентов в линейной модели. В связи с этим, в третьем столбце табл. 1 приведены значения предельного эффекта для переменных со статистически значимыми оценками коэффициентов, вычисленные при средних значениях объясняющих переменных на рассмотренном периоде. Так, значение 0.060 предельного эффекта для дамми переменной end of period означает, что если аукцион проводится в конце периода между проверками выполнения требований в отношении резервов, то (при неизменных значениях остальных объясняющих переменных) шансы за то, что банк примет участие в аукционе, против того, что банк не примет участие в аукционе, возрастают в среднем приблизительно на 6%.  [c.340]

Смотреть страницы где упоминается термин Проверка значимости модели

: [c.148]    [c.329]    [c.479]    [c.135]    [c.135]    [c.135]