Регрессионные модели не линейные по параметрам

В главах 3,4 рассмотрены классические линейные регрессионные модели в главе 3 — парные регрессионные модели, на примере которых наиболее доступно и наглядно удается проследить базовые понятия регрессионного анализа, выяснить основные предпосылки классической модели, дать оценку ее параметров и геометрическую интерпретацию в главе 4 — обобщение  [c.3]


В предыдущих главах была изучена классическая линейная модель регрессии, приведена оценка параметров модели и проверка статистических гипотез о регрессии. Однако мы не касались некоторых проблем, связанных с практическим использованием модели множественной регрессии. К их числу относятся мультиколлинеарность, ее причины и методы устранения использование фиктивных переменных при включении в регрессионную модель качественных объясняющих переменных, линеаризация модели, вопросы частной корреляции между переменными. Изучению указанных проблем посвящена данная глава.  [c.108]

При функциональной форме мультиколлинеарности по крайней мере одна из парных связей между объясняющими переменными является линейной функциональной зависимостью. В этом случае матрица Х Х особенная, так как содержит линейно зависимые векторы-столбцы и ее определитель равен нулю, т. е. нарушается предпосылка 6 регрессионного анализа. Это приводит к невозможности решения соответствующей системы нормальных уравнений и получения оценок параметров регрессионной модели.  [c.108]


Качественные признаки могут существенно влиять на структуру линейных связей между переменными и приводить к скачкообразному изменению параметров регрессионной модели. В этом случае говорят об исследовании регрессионных моделей с переменной структурой или построении регрессионных моделей по неоднородным данным.  [c.116]

До сих пор мы рассматривали линейные регрессионные модели, в которых переменные имели первую степень (модели, линейные по переменным), а параметры выступали в виде коэффициентов при этих переменных (модели, линейные по параметрам). Однако соотношение между социально-экономическими явлениями и процессами далеко не всегда можно выразить линейными функциями, так как при этом могут возникать неоправданно большие ошибки.  [c.124]

Регрессионные модели не линейные по параметрам 125, 126 -------переменным 125  [c.304]

Для линейной зависимости признаков скорректированный коэффициент множественной корреляции определяется по той же формуле, что и индекс множественной корреляции, т.е. как корень квадратный из R2. Отличие состоит лишь в том, что в линейной зависимости под т подразумевается число факторов, включенных в регрессионную модель, а в криволинейной зависимости т — число параметров при х и их преобразованиях (х2, In х и др.), которое может быть больше числа факторов как экономических переменных. Так, если у -f(xb x-J, то для линейной регрессии т = 2, а для регрессии вида  [c.120]

Вспомним, что в 2, при рассмотрении линейной регрессионной модели (у, Х/3, сг2 V), говорилось, что функцию параметров W/3 можно оценить, если существует по крайней мере одна аффинная несмещенная оценка для W/3.  [c.332]


В рамках линейной регрессионной модели (у, Х/3, сг2 V), функция параметров W/3 оцениваема тогда и только тогда, когда ol(VK ) С со (Х ).  [c.332]

Одним из методов, получивших наибольшее распространение, является метод регрессионного анализа, основанный на выявлении взаимосвязей между оценками необходимых ресурсов разработки и факторами, их определяющими. Этот метод предполагает выявление группы факторов, существенно влияющих на зависимую переменную, построение линейной регрессионной модели, в которой коэффициенты при независимых переменных являются ее параметрами.  [c.218]

Интерпретация параметров интенсивности влияния факторов fli в многомерных регрессионных моделях определяется наличием и теснотой внутренних связей системы факторных показателей. Хотя наиболее распространенный метод оценки коэффициентов регрессииметод наименьших квадратов — предполагает статистическую независимость факторных показателей, в практических попытках моделирования хозяйственной деятельности данное требование трудно выполнять и поэтому в общем случае им пренебрегают. Изучаются лишь пути устранения явных искажений, когда направление влияния фактора в модели прямо противоречит сущности моделируемого явления или теоретическим представлениям о сущности моделируемой связи. Такое положение создается из-за наличия тесной связи между факторами (какой-нибудь фактор выражается линейной комбинацией других факторов, включенных в мо-  [c.120]

Данные модели допускают работу с нелинейными связями между параметрами, что дает им существенное преимущество перед линейными регрессионными моделями. На практике нейросетевые модели наиболее часто используются для прогнозирования перспективных объемов продаж, биржевых цен, обменных курсов, для выявления системных связей.  [c.242]

В пятой главе рассматриваются предпосылки классической линейной регрессионной модели, выполнимость которых обеспечивает получение качественных оценок параметров линейных уравнений регрессии на базе МНК. Приводится схема определения точности оценок коэффициентов регрессии. Анализируются прогнозные качества парной линейной регрессии. Описывается схема оценки общего качества уравнения регрессии с помощью коэффициента детерминации.  [c.8]

Соотношение (4.6) называется теоретической линейной регрессионной моделью, ро и Pi теоретическими параметрами (теоретическими коэффициентами) регрессии Si - случайным отклонением.  [c.99]

Предположим, что мы ищем параметры нормальной линейной регрессионной модели  [c.55]

Вопрос о выборе типа производственной функции народного хозяйства в экономико-математических моделях, в которых экономика страны является элементарной производственной единицей, остается сложной проблемой. Недостатки, которые имеет степенная производственная функция по сравнению с функцией с постоянной эластичностью замещения или с различными другими более сложными производственными функциями с избытком компенсируются легкостью оценки параметров степенной производственной функции. Как уже говорилось в 4 гл. 2, проблему оценки параметров А и ее для производственной функции (2.7) можно свести к задаче регрессионного анализа для линейной функции, в то время как производственная функция (2.9) требует применения методов регрессионного анализа для нелинейных функций, что является более сложной проблемой. Кроме того, исследование модели со степенными производственными функциями осуществляется более просто. Поэтому степенные функции используются довольно часто, тем более что их основной недостаток — возможность замены одного ресурса другим — часто не является существенным, поскольку в исследованиях обычно бывают интересны значения ресурсов, достаточно близкие к уже использующимся в производстве в настоящее время и далекие от нулевых значений. Поэтому неправдоподобность поведения степенных производственных функций в области малых количеств ресурсов становится не так уже важна.  [c.243]

Сравнивая два способа решения систем (8.60) (непосредственно с матрицей X и с переходом к системе нормальных уравнений), можно сделать вывод, что несогласованные системы (8.60), как правило, лучше решать, используя переход к нормальной системе уравнений. В статистической практике несогласованные системы возникают, когда матрица данных X переопределена, т. е. число объектов (столбцов) в ней больше числа переменных (строк), и при этом линейные уравнения, входящие в систему (8.60), не могут выполняться точно. Но превышение числа объектов над числом переменных — типичная ситуация в регрессионном анализе. Второе условие несогласованности также часто выполняется, так как обычно системы линейных уравнений используются для оценки параметров линейных моделей типа (8.1), являющихся лишь приближением действительных соотношений между переменными (мерой этого приближения как раз и является дисперсия случайной компоненты е). Для обоснования перехода к нормальной системе уравнений существенно и то, что матрица Х Х тесно связана с ковариационной матрицей, которая является исходным объектом для различных видов многомерного анализа (главных компонент, факторного анализа и т. д.).  [c.275]

В четвертой главе рассматриваются базовые аспекты регрессионного анализа, лежащего в основе построения и совершенствования эконометрических моделей. На примере парной линейной регрессии подробно представлен фундаментальный метод оценки параметров уравнений регрессии - метод наименьших квадратов (МНК).  [c.7]

Наиболее распространенным в практике статистического оценивания параметров уравнений регрессии является метод наименьших квадратов. Этот метод основан на ряде предпосылок относительно природы данных и результатов построения модели. Основные из них - это четкое разделение исходных переменных на зависимые и независимые, некоррелированность факторов, входящих в уравнения, линейность связи, отсутствие автокорреляции остатков, равенство их математических ожиданий нулю и постоянная дисперсия. Эмпирические данные не всегда обладают такими характеристиками, т.е. предпосылки МНК нарушаются. Применение этого метода в чистом виде может привести к таким нежелательным результатам, как смещение оцениваемых параметров, снижение их состоятельности, устойчивости, а в некоторых случаях может и вовсе не дать решения. Для смягчения нежелательных эффектов при построении регрессионных уравнений, повышения адекватности моделей существует ряд усовершенствований МНК, которые применяются для данных нестандартной природы.  [c.353]

Методы линейного и нелинейного регрессионного анализа позволяют строить линейные и нелинейные модели для оценивания параметров, выявления функциональных зависимостей по статистическим данным, строить тренды и т. д.  [c.207]

ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ [e onometri model] — основное понятие эконометрии, экономико-математическая модель, параметры которой оцениваются с помощью методов математической статистики. Она выступает в качестве средства анализа и прогнозирования конкретных экономических процессов как на макро-, так и на микроэкономическом уровне на основе реальной статистической информации. Наиболее распространены Э.м., представляющие собой системы регрессионных уравнений, в которых отражается зависимость эндогенных величин (искомых) от внешних воздействий (текущих экзогенных величин) в условиях, описываемых параметрами модели, а также лаговыми переменными (см. Лаг). Кроме регрессионных (как линейных, так и нелинейных) уравнений, применяются и другие матема-тико-статистические модели.  [c.400]

Наиболее предпочтительны линейные многофакторные регрессионные модели. При использовании же нелинейных многофакторных моделей увеличение числа параметров ведет к снижению точности оценок и сложности интерпретации возникают сложности и при их оптимизации. Однако практически наиболее употребимые непрерывные (линейные и нелинейные) регрессионные модели предполагают наличие качественной однородности рассматриваемой совокупности, что наблюдается далеко не всегда. Неизбежны и различия в уровне техники, технологии и организации производства на отдельных объектах исследуемой совокупности, вызванные различиями в возрасте объектов (или отдельных единиц оборудования), их мощности, структуре выпуска продукции и ее назначении, природных условиях и т. д. Эти различия могут быть таковы, что внутри общей совокупности четко выделяются особые подсовокупности с различными характеристиками интересующих нас зависимостей. В этих условиях применение непрерывных моделей неправомерно, что вынуждает переходить к построению дискретных и дискретно-непрерывных моделей.  [c.40]

Шестая часть посвящена оценкам максимального правдоподобия, которые, конечно, являются идеальным объектом для демонстрации мощи развиваемой техники. В первых трех главах исследуется несколько моделей, среди которых есть многомерное нормальное распределение, модель с ошибками в переменных и нелинейная регрессионная модель. Рассматриваются методы работы с симметрией и положительной определенностью, специальное внимание уделено информационной матрице. Вторая глава этой части содержит обсуждение одновременных уравнений при условии нормальности ошибок. В ней рассматриваются проблемы оценивания и идентифицируемости параметров при различных (не)линейных ограничениях на параметры. В этой части рассматривается также метод максимального правдоподобия с полной информацией (FIML) и метод максимального правдоподобия с ограниченной информацией (LIML), особое внимание уделено выводу асимптотических ковариационных матриц. Последняя глава посвящена различным проблемам и методам психометрики, в том числе методу главных компонент, мультимодальному компо-  [c.16]

Одним из условий классической регрессионной модели является предположение о линейной независимости объясняющих переменных, что означает линейную независимость столбцов матрицы регрессоров X или (эквивалентно) что матрица (Х Х) 1 имеет полный ранг k. При нарушении этого условия, т. е. когда один из столбцов матрицы X есть линейная комбинация остальных столбцов, говорят, что имеет место полная коллинеарность. В этой ситуации нельзя построить МНК-оценку параметра (3, что формально следует из сингулярности матрицы X X и невозможности решить нормальные уравнения. Нетрудно также понять и содержательный смысл этого явления. Рассмотрим следующий простой пример регрессии (Greene, 1997) С = fa + faS + foN + /34Т + е, где С — потребление, S — зарплата, N — доход, получаемый вне работы, Т — полный доход. Поскольку выполнено равенство Т = S + N, то для произвольного числа h исходную регрессию можно переписать в следующем виде С = (3i+/3 2S+/3 3iN+/3 4T-1r , где / 2 = 02 + h, /% = Рз + h, /3 4 = 04 — h. Таким образом, одни и те же наблюдения могут быть объяснены различными наборами коэффициентов /3. Эта ситуация тесно связана с проблемой идентифицируемости системы, о чем более подробно будет говориться позднее. Кроме того, если с учетом равенства Т — S + N переписать исходную систему в виде С = fa + (/% + 0 )S + (/Зз + /3 )N + е, то становится ясно, что оценить можно лишь три параметра fa, (Дз + Д ) и (/ 3 + /3[c.109]

Поскольку модель (12.3) нелинейна по параметрам /3, i интерпретация отличается от привычной интерпретации коэс циентов линейных регрессионных моделей. Предположим, г функции распределения F(-) есть плотность р(-). Диффер руя по векторному аргументу х (приложение ЛА, п. 19) и оп> нижний индекс t (номер наблюдения), получаем  [c.325]

В п. 4.4 мы рассмотрели проблемы исключения существенных и включения несущественных переменных для линейных регрессионных моделей. Можно поставить аналогичный вопрос какое влияние оказывает пропуск существенных переменных в уравнении (12.4) на оценивание модели бинарного выбора (12.3) Исчерпывающий ответ на него выходит за рамки нашей книги. Отметим лишь, что в данном случае, даже если исключенные существенные переменные ортогональны включенным, оценки параметров будут, в отличие от линейной схемы, смещенными и несостоятельными (подробнее см. (Greene, 1997) и (Johnston and DiNardo, 1997)).  [c.329]

Программа REG является общей для выполнения регрессионного анализа, которая подходит для парных и множественных регрессионных моделей при использовании метода наименьших квадратов. Она позволяет вычислить все соответствующие статистики и построить график расположения остаточных членов. Могут быть реализованы ступенчатые методы. Метод рекомендуют для регрессии в случае некорректных данных, Программа использует метод наименьших квадратов для подгонки общих линейных моделей, ее также можно использовать для регрессионного анализа. С помощью программы NLIN вычисляют параметры нелинейных моделей, используя методы наименьших тов или взвешенных наименьших квадратов.  [c.675]

СПЕЦИФИКАЦИЯ МОДЕЛИ [spe ifi ation of a model] — один из этапов построения экономико-математической модели, на котором на основании предварительного анализа рассматриваемого экономического объекта или процесса в математической форме выражаются обнаруженные связи и соотношения, а значит, параметры и переменные, которые на данном этапе представляются существенными для цели исследования. Иными словами, См. есть выбор формулы связи переменных. Напр., в случае регрессионного анализа выбирается формула регрессии, подходящая для обнаруженных сочетаний независимых и зависимых переменных — линейная, квадратичная или иная.  [c.338]

Модель, определяемую соотношениями и условиями (11.1), (11.2), (11.4) и (11.5), будем называть линейным (относительно оцениваемых параметров) нормальным вариантом идеализированной схемы регрессионной зависимости (идеализация, к к было отмечено, заключается в постулировании редко выполняющихся в статистической практике допущений (11.7) и (11.2)).  [c.337]

Смотреть страницы где упоминается термин Регрессионные модели не линейные по параметрам

: [c.17]    [c.120]    [c.461]    [c.169]    [c.393]   
Эконометрика (2002) -- [ c.125 , c.126 ]