Регрессионный анализ линейный

Математические модели корреляционного анализа в форме коэффициентов имеют ограниченные аналитические возможности. Зная лишь направление ковариации показателей и тесноту связи, невозможно определить закономерности формирования уровня результативного показателя под влиянием исследуемых факторов, оценить интенсивность их влияния, классифицировать факторы на основные и второстепенные. Для этих целей используются модели регрессионного анализа. Линейная модель (уравнение) регрессионного анализа может быть представлена в виде  [c.282]


Графики и диаграммы незаменимы для иллюстрации результатов экономико-математических методов, которые находят все более широкое применение в экономическом анализе. К ним относятся корреляционный и регрессионный анализ, линейное, динамическое и выпуклое программирование, теории игр и теории массового обслуживания, матричные методы, эвристические методы и др. Об этом более подробно — в следующей главе.  [c.72]

КОРРЕЛЯЦИОННЫЙ И РЕГРЕССИОННЫЙ АНАЛИЗ — способ установления линейной зависимости и тесноты связи между параметрами (численностью персонала и влияющими на нее факторами). Математический аппарат К. и р.а. подробно рассматривается в специальной литературе по статистике.  [c.144]

СТАТИСТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ЧИСЛЕННОСТИ ПЕРСОНАЛА - группа методов определения численности персонала основываются на анализе взаимосвязи между потребностью в персонале и др. переменными величинами (стохастические методы), а также на количественной оценке потребности в персонале, исходя из мнения специалистов, если непосредственное количественное измерение потребности затруднено (методы экспертных оценок). Наиболее применимым на практике из стохастических методов является расчет числовых характеристик (см. Методы расчета потребности в персонале). К стохастическим методам относятся регрессионный и корреляционный анализы. Регрессионный анализ предполагает установление линейной зависимости между численностью персонала и влияющими на нее факторами. Общая формула выглядит следующим образом  [c.359]


Чем удачнее подобрана модель, тем точнее она отражает характерные черты анализируемого процесса, тем достовернее полученные результаты. К построению моделей подходят по-разному используют методы математического программирования (линейное, динамичное, выпуклое, стохастическое), сетевого и матричного планирования, математической статистики (дисперсионный и регрессионный анализы, группировка совокупностей по статистическим критериям) и т.д.  [c.33]

Если исходя из теоретических предпосылок нельзя обоснованно выбрать форму связи, то ее определяют эмпирическим путем постепенным приближением к данным наблюдениям. Поскольку в работах, посвященных анализу характера зависимости y = f(x), нет достаточно убедительных априорных сведений, для регрессионного анализа была выбрана линейная функция вида  [c.82]

Ввиду Того, что опытный метод количественного определения влияния этих факторов на норму расхода не может быть использован из— за отсутствия необходимых экспериментальных данных, целесообразно выявлять зависимость между ними на основе такого математического аппарата, как регрессионный анализ. С учетом характера влияния указанных факторов на величину фактического удельного расхода была рассмотрена следующая линейная многофакторная модель  [c.48]

Один из способов сокращения фактора субъективности оценок — это следование более точным методам обработки данных прошлых периодов графика разброса эмпирических значений, анализа диапазона и линейного регрессионного анализа.  [c.111]

Последний метод оценки затрат, который здесь будет рассмотрен, предполагает использование аппарата линейного регрессионного анализа.  [c.120]

Линейный регрессионный анализ  [c.120]


Такой метод, несомненно, дает математически более точный результат, чем график разброса, или анализ диапазона, но дает ли он более точный прогноз совокупных затрат Как и два других метода, линейный регрессионный анализ предполагает линейное поведение затрат. (Помните, что математическое выражение общих затрат, которое мы дали выше, у - а + Ьх представляет собой общую формулу графика прямой линии.) Кроме того, здесь по-прежнему прогноз строится на основе анализа данных прошлых периодов. Таким образом, чем больше результатов прошлых наблюдений включено в регрессионный анализ, тем лучше математически обоснован результат. Однако, как мы уже убедились, при оценке затрат увеличение числа значений наблюдений прошлых периодов не всегда дает положительный эффект.  [c.122]

Совокупные эксплуатационные затраты могут изменяться под воздействием нескольких факторов, например, таких, как количество машин в парке срок их службы время работы механиков, обслуживающих машины. Ни один из названных факторов не был учтен при построении графика разброса, проведении анализа диапазона или линейного регрессионного анализа и не мог быть учтен. Все три метода предполагают, что изменчивость затрат обусловлена единственным фактором (в данном случае автопробегом). Поэтому необходимо убедиться в том, что показатель объема действительно является основной причиной изменчивости затрат.  [c.123]

Линейный регрессионный анализ — это математический метод, используемый для вывода линейного уравнения совокупных затрат у = а + Ьх, где у — совокупные затраты а — постоянные затраты Ъ — удельные переменные затраты х — объем деятельности. Значения а и Ъ рассчитываются по следующим формулам  [c.142]

Линейный регрессионный анализ математически более точен, чем анализ счетов, график разброса и анализ диапазона. Однако он предполагает поведение затрат только линейным математическая точность не обязательно дает более точный прогноз затрат.  [c.142]

Форма связи обычно задается самим постановщиком задачи в зависимости от характера изменения (развития) изучаемого объекта. Кроме того, она может быть определена и программным путем. Желательно при этом свести модель к линейной форме, так как весь аппарат корреляционно-регрессионного анализа ориентирован на линейность связей  [c.137]

Вопрос о выборе типа производственной функции народного хозяйства в экономико-математических моделях, в которых экономика страны является элементарной производственной единицей, остается сложной проблемой. Недостатки, которые имеет степенная производственная функция по сравнению с функцией с постоянной эластичностью замещения или с различными другими более сложными производственными функциями с избытком компенсируются легкостью оценки параметров степенной производственной функции. Как уже говорилось в 4 гл. 2, проблему оценки параметров А и ее для производственной функции (2.7) можно свести к задаче регрессионного анализа для линейной функции, в то время как производственная функция (2.9) требует применения методов регрессионного анализа для нелинейных функций, что является более сложной проблемой. Кроме того, исследование модели со степенными производственными функциями осуществляется более просто. Поэтому степенные функции используются довольно часто, тем более что их основной недостаток — возможность замены одного ресурса другим — часто не является существенным, поскольку в исследованиях обычно бывают интересны значения ресурсов, достаточно близкие к уже использующимся в производстве в настоящее время и далекие от нулевых значений. Поэтому неправдоподобность поведения степенных производственных функций в области малых количеств ресурсов становится не так уже важна.  [c.243]

Для изучения влияния одних процентных ставок на другие целесообразно проводить корреляционно-регрессионный анализ, позволяющий измерить тесноту связи между изучаемыми показателями (корреляционный анализ) и определить теоретическую форму связи между ними (регрессионный анализ). Прежде всего необходимо получить подтверждение о том, что связь между двумя или более изучаемыми показателями существует, а затем измерить ее. Применение тех или иных методов корреляционного анализа зависит от целей исследования. В случае парной корреляции, т.е. когда анализу подвергается влияние одного показателя (фактора, х) на другой (результат, у), чаще всего используют линейный коэффициент корреляции. В случае множественной корреляции, т.е. когда проводят анализ влияния нескольких факторов (л , х . ... л ) на результат (у), как правило, рассчитывают парные, частные и совокупный коэффициенты корреляции.  [c.622]

После проведения корреляционного анализа принимается решение о целесообразности построения уравнения регрессии, с помощью которого определяется аналитическое выражение формы связи между отдельными видами процентных ставок. С помощью регрессионного анализа выявляется изменение одной величины (результата) под влиянием одного или нескольких факторов, а множество прочих причин, оказывающих влияние на результат, принимается за постоянные и средние значения. Регрессия может быть однофакторной (парной) и многофакторной (множественной). Подбор аналитических функций (линейных и криволинейных) для построения уравнения регрессии осуществляется аналогично подбору функций для уравнения тренда. На практике теоретическая форма связи определяется с использованием пакета статистических программ на ПЭВМ. Для наглядного изображения теоретической формы связи значения показателей, полученные с помощью уравнения регрессии, наносят на график и сравнивают их с эмпирическими данными.  [c.624]

Проблемы множественного корреляционно-регрессионного анализа и моделирования подробно изучаются в специальном курсе того же названия. В курсе Общая теория статистики рассматриваются только самые общие вопросы этой сложной проблемы и дается начальное представление о методике построения уравнения множественной регрессии и показателей связи. Рассмотрим линейную  [c.268]

В главах 3,4 рассмотрены классические линейные регрессионные модели в главе 3 — парные регрессионные модели, на примере которых наиболее доступно и наглядно удается проследить базовые понятия регрессионного анализа, выяснить основные предпосылки классической модели, дать оценку ее параметров и геометрическую интерпретацию в главе 4 — обобщение  [c.3]

Рассмотрим линейный регрессионный анализ, для которого функции Ф(А") линейна относительно оцениваемых параметров  [c.60]

При функциональной форме мультиколлинеарности по крайней мере одна из парных связей между объясняющими переменными является линейной функциональной зависимостью. В этом случае матрица Х Х особенная, так как содержит линейно зависимые векторы-столбцы и ее определитель равен нулю, т. е. нарушается предпосылка 6 регрессионного анализа. Это приводит к невозможности решения соответствующей системы нормальных уравнений и получения оценок параметров регрессионной модели.  [c.108]

При моделировании реальных экономических процессов мы нередко сталкиваемся с ситуациями, в которых условия классической линейной модели регрессии оказываются нарушенными. В частности, могут не выполняться предпосылки 3 и 4 регрессионного анализа (см. (3.24) и (3.25)) о том, что случайные возмущения (ошибки) модели имеют постоянную дисперсию и не коррелированы между собой. Для линейной множественной модели эти предпосылки означают (см. 4.2), что ковариационная матрица вектора возмущений (ошибок) е имеет вид  [c.150]

Регрессионный анализ - это статистическая процедура для математической усредненной оценки функциональной зависимости между зависимой переменной и независимой переменной (независимыми переменными). Простая регрессия рассматривает одну независимую переменную цену или затраты на рекламу в функции спроса, а множественная регрессия рассматривает две или большее количество переменных, например, цену и затраты на рекламу совместно. В этой главе обсуждается простая (линейная) регрессия, например, Y = а + ЬХ и показывается, как метод наименьших квадратов применяется для расчета коэффициентов регрессии.  [c.257]

Рассматривает линейную зависимость между зависимой и независимой переменными. Описывается в форме Y = а + ЬХ, в то время как нелинейная регрессия предполагает нелинейную зависимость, например, экспоненциальную и квадратическую функции. См. Регрессионный анализ.  [c.462]

Количественная зависимость между изменениями результативного (Ц) и факторных (Xj) признаков находится на основе метода регрессионного анализа. При этом могут быть получены различные уравнения регрессии линейное  [c.291]

Регрессионный анализ - один из наиболее разработанных методов математической статистики. Строго говоря, для реализации регрессионного анализа необходимо выполнение ряда специальных требований (в частности, х[,х2,...,хп у должны быть независимыми, нормально распределенными случайными величинами с постоянными дисперсиями). В реальной жизни строгое соответствие требованиям регрессионного и корреляционного анализа встречается очень редко, однако оба эти метода весьма распространены в экономических исследованиях. Зависимости в экономике могут быть не только прямыми, но и обратными и нелинейными. Регрессионная модель может быть построена при наличии любой зависимости, однако в многофакторном анализе используют только линейные модели вида  [c.101]

Приемы и методы экономического анализа также весьма разнообразны. В ходе анализа широко применяется метод сравнений, детализации, элиминирования, факторного разложения, балансовый, группировки, взаимосвязанного изучения. Последние годы в анализе все шире применяются приемы и методы, заимствованные из математики, кибернетики и других наук. Отметим, в частности, корреляционный, регрессионный, вариационный, дисперсионный, многомерный, факторный анализ линейное и динамическое программирование, статистическое моделирование.  [c.17]

Индикатор прогноза временных рядов (TSF) показывает статистическую тенденцию цен за определенный период времени. Эта тенденция определяется на основе анализа линейной регрессии. В отличие от прямых линий тренда линейной регрессии (см. стр. 90), график индикатора TSF — это кривая, составленная из последних точек множественных линий тренда линейной регрессии. Поэтому индикатор TSF иногда называют индикатором скользящей линейной регрессии или регрессионным осциллятором .  [c.168]

Была сделана попытка выяснить структуру реализуемого отображения. Исследование вклада каждой переменной через веса непосредственных связей и через значения векторов весов-состояния позволило получить представление как о линейных, так и о нелинейных компонентах модели. По-видимому, календарные эффекты, число рабочих дней и температура влияют на значения целевой переменной отрицательно, тогда как увеличение годового правительственного прогноза и потребления приводит к росту целевого значения. Остальные переменные активны при-любых значениях целевой переменной. Такое сложное влияние переменных едва ли уловимо средствами регрессионного анализа. Различие между линейными и нелинейными компонентами, возможно, несколько преувеличено, так как значение отношения SR больше 0.7.  [c.113]

Нельзя согласиться с первым мнением Ф. Миллса, так как плавный уровень изучаемых динамических рядов может быть различен в зависимости от характера данного явления. Он может быть линейным, параболическим, гиперболическим и т. д. Мы предпочитаем точку зрения Н. К. Дружинина [40]. Исключая уровни динамических рядов, коррелируем отклонения от них. При этом не имеет значения, выражается ли этот уровень прямой или параболой. Отклонения от уровней временных рядов, независимо от их формы, являются беспорядочными числами, к которым можно применять корреляционно-регрессионный анализ.  [c.73]

Особенность математических методов, используемых для решения задач текущего планирования, заключается в том, что анализ деятельности объектов нефтебазового хозяйства производится с применением методов кластерного и корреляционно-регрессионного анализа и методов теории вероятностей, а выбор оптимальной схемы внутриуправленческих перевозок — путем построения модели многопродуктовой, многоэтапной транспортной задачи линейного программирования с учетом внутригодовой динамики.  [c.30]

Блок 6 — построение в каждом классе линейной многофакторной корреляционной модели, отражающей зависимость экономических показателей от объективных факторов производства (табл. 34). Корреляционно-регрессионный анализ предусматривается проводить с помощью модуля Ml08.  [c.97]

В результате решения задачи 1 выбираются показатели, характеризующие факторы, влияющие на процесс нефтеснабжения, устанавливаются источники информации о них и обосновываются те или иные математические методы, необходимые для моделирования отдельных задач нефтеснабжения. В ходе исследований была установлена правомерность использования при изучении спроса на нефтепродукты методов корреляционно-регрессионного анализа. При анализе деятельности объектов нефтебазового хозяйства выявлена необходимость получения качественно однородных совокупностей. При выборе оптимальных вариантов внутриуправленче-ских перевозок нефтепродуктов в условиях наиболее эффективного использования и развития объектов нефтебазового хозяйства правомерным представляется использование методов линейного программирования. Для выявления резервов повышения пропускной способности действующих объектов нефтебазового хозяйства — метод ов теории вероятностей и распознавания образов и т. д.  [c.15]

Новые методы, в том числе методы нейронных сетей, дают возможность исследовать нелинейные модели, ранее не подвергавшиеся тестированию. Возможно, что традиционные модели формирования цен оказываются недостаточно хорошими именно из-за неадекватной спецификации, а не из-за свойств эффективности рынка. В этой книге мы исследуем вопрос о том, можно ли с помощью MBPN-мо-дели получить возможности для извлечения прибыли на небольшом отрезке времени. Используя базу данных о сделках, совершаемых в течение рабочего дня на Европейской бирже опционов в Амстердаме, мы пытались прогнозировать размер прибыли по обыкновенным акциям компании Филипс. Две нейронные сети и обычный линейный регрессионный анализ сравнивались между собой по трем критериям средней квадратичной ошибке (MSE), р и полученному  [c.112]

Эконометрика (2002) -- [ c.60 ]