При достаточно большом числе итераций оценки трехшагового метода наименьших квадратов совпадают с оценками максимального правдоподобия. [c.240]
Указанный тип уравнения — единственный, для которого может быть построен алгоритм нахождения оценок максимального правдоподобия и точечного прогноза (см. [16, 24 — 25]). Однако и для этого вида уравнений неприменимы методы ковариационного анализа (см. [16]), а экспериментальные оценки методом Монте-Карло в [24] привели к заключению о наибольшей пригодности двухшагового метода обобщенных наименьших квадратов. Но фактические вычисления [25] — правда, по более сложным типам моделей — не подтвердили в столь категорической форме этого вывода. С другой стороны, как следует из анализа аналогичной проблемы для регрессионных уравнений с текущими значениями переменных [16], двухшаговые процедуры даже в этом более простом случае не приводят хотя бы к асимптотическим оценкам наибольшего правдоподобия. [c.81]
Эта специфичность природы зависимости, присущая схеме Dlt сильно усложняет задачу построения хороших оценок для неизвестных параметров, входящих в соотношение (В.20). Дело в том, что достаточно хорошо разработанная теория построения таких оценок для схем В и С, в частности оценок максимального правдоподобия, оценок наименьших квадратов, [c.42]
Рассмотрим модель Yt a+f X + t, где ошибки являются независимыми одинаково распределенными нормальными случайными величинами. Почему для оценивания параметров нельзя применять метод наименьших квадратов Выведите уравнение для оценок максимального правдоподобия. [c.59]
Легко также видеть, что если величины возмущений и представляют собой выборку из нормально распределенной совокупности, то метод наименьших квадратов приводит к оценкам максимального правдоподобия. Из (12.29) следует, что функция правдоподобия имеет в этом случае вид [c.377]
Параметры уравнения определяются методом наименьших квадратов. Этот метод не является, конечно, единственным способом определения искомых параметров производственной функции (возможен, например, метод максимального правдоподобия или метод экспертных оценок). Однако метод наименьших квадратов наиболее разработан и, пожалуй, самый обоснованный из математико-стати-стических приемов обработки исходной информации. С помощью этого метода и решена наша конкретная задача. [c.85]
Метод экспоненциального сглаживания дает более точное приближение к исходному ряду, улавливая колебания цен. На рис. 9.4 приведены графики исходного и сглаженного ряда с помощью экспоненциального сглаживания. Динамическим рядам цен акций (как и ряду других фондовых инструментов) присущ ряд особенностей, которые могут определять специфику их анализа. Прежде всего это достаточно частые случаи резкого изменения тенденции цены (например, повышательный тренд, так называемый бычий, сменяется его противоположностью, так называемым медвежьим трендом). В этой ситуации возможно использование аналитической аппроксимации. Для оценки параметров уравнения, максимально точно описывающего динамику цен акций, используется метод наименьших квадратов, суть которого состоит в том, что подбирается такая аппроксимирующая кривая, при которой достигается минимум квадратов отклонений исходного ряда от теоретической кривой. [c.372]
До сих пор мы использовали оценки параметров, полученные методом наименьших квадратов. Рассмотрим еще один важный метод получения оценок, широко используемый в эконометрике, — метод максимального правдоподобия. [c.63]
При выполнении предпосылки 5 о нормальном законе распределения вектора возмущений е можно убедиться в том, что оценка Ь обобщенного метода наименьших квадратов для параметра р при известной матрице Q совпадает с его оценкой, полученной методом максимального правдоподобия. [c.154]
Анализируя систему (7.50)—(7.52), видим, что оценки Р и ст2 метода максимального правдоподобия совпадают с оценками Ь и 52 обобщенного метода наименьших квадратов (правда, если [c.187]
Основными методами получения точечных оценок являются метод моментов, метод наименьших квадратов (МНК) и метод максимального правдоподобия (ММП). [c.46]
О. применяются для количественного определения параметров экономико-математических моделей с помощью статистического преобразования выборочной (наблюдаемой) информации. Применяются точечная О. и интервальная О. См. также Выборка, Метод наименьших квадратов, Метод максимального правдоподобия, Оценка параметров модели. [c.253]
Оценка параметров регрессии по методу наименьших квадратов — то же самое, что и оценки по методу максимального правдоподобия, если остатки уравнения регрессии нормально распределены. Таким образом, удобно демонстрировать метод максимального правдоподобия на примере оценок МНК. [c.366]
Вторую группу составляют методы, использующие полную информацию о системе, т. е. о строении ее уравнений и о степени их стохастической зависимости. Наиболее известными представителями этой группы являются трехшаговый метод наименьших квадратов, рассмотренный в 14.4.3, и метод максимального правдоподобия. Между оценками, получаемыми при помощи этих методов, существует тесная взаимосвязь 3 мнк-оценки можно рассматривать в качестве первого приближения оценок метода максимума правдоподобия, по определению минимизирующих функцию плотности распределения наблюдений (в предположении, что они распределены по нормальному закону). Более того, указанные оценки асимптотически эквивалентны. [c.423]
В конце XIX — начале XX вв. крупный вклад в математическую статистику внесли английские исследователи, прежде всего К. Пирсон (1857—1936) и Р. А. Фишер (1890—1962). В частности, Пирсон разработал критерии хи-квадрат проверки статистических гипотез, а Фишер — метод максимального правдоподобия оценки параметров. [c.13]
ФУНКЦИЯ ОЦЕНОЧНАЯ — это форму ла либо процедура, с помощью которой производится оценка статистических величин (к примеру, дисперсия переменной) либо параметров уравнения. В качестве примера подобного рода эконометрических функций можно привести метод максимального правдоподобия с полной информацией и метод наименьших квадратов. [c.726]
Наиболее употребляемыми методами нахождения точечных оценок являются метод моментов, метод максимального правдоподобия, метод наименьших квадратов, описание которых можно найти в любом учебнике по математической статистике. [c.63]
Пусть SML = Y et/ n и OLS — ] et/ (n — 1 — оценки методов максимального правдоподобия и наименьших квадратов для дисперсии ошибок <т2 в классической модели парной регрессии Yt = [c.62]
Из вида функции I видно, что оценка коэффициентов 6, ф по условному методу максимального правдоподобия совпадает с оценкой нелинейного метода наименьших квадратов. (Заметим, что сумма в правой части (11.92) является нелинейной функцией параметров 6, ф. ) [c.305]
Модели AR H и GAR H удовлетворяют всем условиям классической модели, и метод наименьших квадратов позволяет получить оптимальные линейные оценки. В то же время можно получить более эффективные нелинейные оценки методом максимального правдоподобия. В отличие от модели с независимыми нормально распределенными ошибками регрессии в AR H-модели оценки максимального правдоподобия отличаются от оценок, полученных методом наименьших квадратов. [c.217]
Отметим, что оценки максимального правдоподобия параметров а, 6 совпадают с оценками метода наименьших квадратов OML = SOLS, ML OLS- Это легко видеть из того, что уравнения (2.37а) и (2.376) совпадают с соответствующими уравнениями метода наименьших квадратов (2.2). Оценка максимального правдоподобия для <т2 не совпадает с
Если вектор ошибок е имеет многомерное нормальное распределение, то можно проверить, что оценка вектора /9, получаемая с помощью обобщенного метода наименьших квадратов, совпадает с оценкой максимального правдоподобия (естественно, при известной матрице fi) /SQLS ftwL- [c.158]
При элемектарной трактовке взаимосвязи между двумя пег-ными с помошью метода наименьших квадратов обычно акцент внимание на к >эффициенте корреляции. До. сих пор речь шла о v нении оценок наименьших квадратов и максимального правдой [c.40]
Иногда как условие корреляционного анализа выдвигают необходимость подчинения распределения совокупности по результативному и факторным признакам нормальному закону распределения вероятностей. Это условие связано с применением метода наименьших квадратов при расчете параметров корреляции только при нормальном распределении метод наименьших квадратов дает оценку параметров, отвечающую принципам максимального правдоподобия. На практике эта предпосылка чаще всего выполняется приближенно, но и тогда метод наименьших квадратов дает неплохие результаты1. [c.231]
В отличие от метода максимального правдоподобия в данном методе сняты ограничения на параметры, связанные с функционированием системы в целом. Это делает решение более простым, но трудоемкость вычислений остается достаточно высокой. Несмотря на его значительную популярность, к середине 60-х годов он был практически вытеснен двухшаговым методом наименьших квадратов (ДМНК) в связи с гораздо большей простотой последнего2. Этому способствовала также разработка в 1961 г. Г. Тейлом семейства оценок коэффициентов структурной модели. Для структурной модели Г. Тейл определил семейство оценок класса А" и показал, что оно включает три важных оператора оценивания обычный МНК при К= 0, ДМНК при К= 1 и метод ог- [c.194]
ОЦЕНКА ПАРАМЕТРОВ МОДЕЛИ (ЕЕ ПАРАМЕТРИЗАЦИЯ) [parameter estimation] — 1. Этап построения экономико-математической модели (напр., эконометрической модели) заключается в определении численных значений существенных параметров модели, выявленных на предварительных этапах анализа исследуемого объекта или процесса (см. Идентификация объекта, Спецификация модели). Параметры модели численно оцениваются по данным, полученным путем экономического эксперимента и статистического наблюдения — чаще всего методом наименьших квадратов, методом максимального правдоподобия, а также некоторыми другими статистическими методами. На этой основе можно производить различные операции над моделью (напр., строить прогнозы поведения системы). [c.254]
В главе 13 изучаются модели, в которых есть априорные ограничения на значения зависимой переменной. Например, при изучении влияния каких-либо факторов на выбор из нескольких альтернатив зависимая переменная в соответствующей модели принимает дискретное множество значений. Ограничения на зависимые переменные возникают также при работе с цензурированны-ми или усеченными выборками. Для подобных моделей метод наименьших квадратов не является адекватным инструментом оценивания и для построения оценок обычно используется метод максимального правдоподобия. [c.19]
При обычных предположениях о распределении возмущения и и о независимости между X и и в принципе не возникают новые проблемы, связанные с оцениванием этой модели. Если спецификация модели выбрана правильно, то метод наименьших квадратов обеспечивает получение лучших линейных несмещенных оценок. Однако некоторые трудности могут возникнуть при практической реализации этого метода. Прежде всего нельзя ожидать, что теория позволит нам сколько-нибудь точно определить длину максимального лага, который должен быть включен в уравнение. Поэтому остается попытаться определить этот лаг, выбрав вначале его достаточно большим и изучив впоследствии значимость коэффициентов при значениях X, отвечающих различным сдвигам во времени. Однако -такая попытка приводит к появлению двух существенных статистических трудностей. Одна трудность связана с тем, что при большой длине лага процедура оценивания проводится при сильно уменьшенном числе степеней свободы, а другая, типичная для подобных моделей, состоит в том, что из-за высокой корреляции между разными лаговыми значениями X падает точность оценок лаговых коэффициентов, что мешает сделать определенные выводы об их величине. [c.292]
Любое ранжирование остальных четырех методов должно рассматриваться как пробное. Первым рассмотрим наименее противоречивый случай. В экспериментах, содержащих ошибку спецификации, двухшаговый метод наименьших квадратов показывает заметно худшие результаты по сравнению с остальными тремя методами, если предопределенные переменные не сильно коррелированы друг с другом, и его качества становятся относительно лучшими, когда такая корреляция присутствует. В итоге представляется правильным присвоение этому методу наименьшего рангового значения. Неожиданно метод максимального правдоподобия с полной информацией оказался лучше других. Можно было ожидать, что он более других методов пострадает от ошибочной спецификации. Конечно, для достаточно больших значений у21 это вполне может произойти. Также неожиданным оказалось и то, что метод наименьших квадратов, без ограничений не проявил себя в этих экспериментах. Это произошло потому, что при работе с малыми выборками использование априорной информации "о модели, которое достигается с помощью метода максимального правдоподобия с полной информацией и метода ограниченной информации для отдельного урав нения, дает больший вклад в качество оценок, чем уменьшение ошибок спецификации этой модели. Метод наименьших квадратов без ограничений не введен нас в заблуждение из-за неправильных ограничений на элементы матрицы П, не в то же время он не способен воспринять верные ограничения. В результате ov. не выдерживает конкуренции с двумя методами, использующими априорнук информацию, когда степень неточности ограничений не очень велика. [c.422]